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Existing visual tracking methods are challenged by object and background appearance variations, which
often occur in a long duration tracking. In this paper, we propose a combined feature evaluation approach
in filter frameworks for adaptive object tracking. First, a feature set is constructed by combining color his-
togram (HC) and gradient orientation histogram (HOG), which gives a representation of both color and
contour. Then, to adapt to the appearance changes of the object and its background, these features are
assigned with different confidences adaptively to make the features with higher discriminative ability
play more important roles in the instantaneous tracking. To keep the temporal consistency, the feature
confidences are evaluated based on Kalman and Particle filters. Experiments and comparisons demon-
strate that object tracking with evaluated features have good performance even when objects go across
complex backgrounds.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Object tracking is to automatically find the same object in adja-
cent frames from a video sequence after the object’s location is ini-
tialized. It plays an important role in many video applications, such
as automatic visual surveillance [1], human computer interaction
systems [2] and robotics [3].

The difficulties of object tracking are caused by the motion state
variation of the object, the appearance variation of the object and
the background, occlusions, etc. Up to now, researchers have fallen
into three different categories to deal with these difficulties,
namely motion models, searching methods and object representa-
tions [4–10].

Motion models are employed to predict the object’s location in
a new frame within a video sequence based on its history motion
characteristics. This can improve the tracking stabilization and
make the tracking survive some occlusions [12–14]. On the other
hand, searching methods are also indispensable to a successful
tracking. Given a tracking object, searching methods use various
matching strategies to find its location in a new video frame. In
addition, when the object varies on size, it is needed to calculate
the scale parameter. Mean Shift algorithm is the most representa-
tive searching method [15].

Although motion models and searching algorithms are crucial
to object tracking, it is not true that a proper motion model to-
gether with a good searching algorithm will always lead to good
tracking results. The most important issue in object tracking is
ll rights reserved.
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whether the object representation is effective enough to discrimi-
nate the object with its background during all the tracking process.
Therefore, in this paper, we cast the object tracking as finding an
adaptive feature representation for the whole tracking process.

Color is one of the most widely used feature representations
[16–19] for its effectiveness and efficiency. Discarding color spatial
distribution, color histogram (HC) is robust to small object defor-
mation, scale variation and some rotation, which ensures the HC
feature representation succeed in many tracking conditions, espe-
cially when the appearances of both the object and background are
stable. However, it is obvious that HC features cannot work well
when the object has the similar color to its background or the ob-
ject has appearance variation caused by illumination changes. In
addition, other characteristics, such as texture and contour, are
employed to represent the object [20,21]. Recently, histogram of
oriented gradient (HOG) [22,23] was widely applied for object
detection and tracking. HOG captures the edges or gradient struc-
tures, which are the characteristics of local contour and shape, and
therefore it is insensitive to color variation. In [22], Dalal et al. jus-
tified that the representation ability of HOG is almost as capable as
scale invariant feature transformation (SIFT) [25] descriptors given
a fixed scale. However, similar to other contour and texture fea-
tures, a disadvantage of HOG is that it cannot effectively represent
objects or backgrounds with large smooth regions since the con-
tours of them are indistinctive. Another disadvantage of HOG is
that it is orientation sensitive, which means that when the object
rotates the previous representation will be invalid.

The mutual complementarities of the two types of features
inspired us to integrate them together. Then the central issue in
object tracking will become which features are important and
informative for tracking. Our insight is that the features which
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can distinguish the object from the background better are more
important and should be assigned larger confidences.

There have been enormous efforts on finding the ‘‘optimal” fea-
tures. Collins et al. [19] developed an online feature selection
method. They noted susceptibility of the variance ratio feature
selection method to distraction by spatially correlated background
clutter and developed an additional approach that seeks to mini-
mize the likelihood of distraction. And they defined the discrimina-
tive ability of a feature according to the two-class variance ratio
measures of the object and its background. Liang et al. [17] pro-
posed a similar approach in which the discriminative ability of a
feature is calculated based on Bayes Error Rate between the object
and its background. Bayes Error Rate of a feature is calculated by
the intersection of the likelihood function of the object and its
background on the feature. Wang et al. [20] proposed a method
to online evaluate a subset of Haar-like features by Adaboost learn-
ing. Chen et al. [18] used a hierarchical Monte Carlo algorithm to
learn region confidences for object tracking. Despite the advanta-
ges of these approaches, a main drawback is that most of them se-
lect or evaluate the features separately in a video frame and
seldom consider the temporal consistency of the process, which
will decrease the tracking stabilization.

In literature [21], Wang et al. also used online feature evalua-
tion of combined feature set for object tracking, while temporal
consistency of the evaluation and features’ rotation sensitivity
are not considered. In this paper, these two problems are fully
investigated. And the contributions are summarized as follows.

1.1. A combined feature set for adaptive object tracking

The combined feature set is the integration of colors, edge ori-
entations, local contours, and SIFT descriptors. What is more, we
propose an approach to reduce the orientation sensitivity of the
HOG features by calculating the dominant orientation of the object,
which improves the effectiveness of the proposed combined fea-
ture set.

1.2. A new feature evaluation approach considering temporal
consistency based on tracking filters

Traditional filter algorithms are generally used to model object
motion states in a visual tracking, while we apply them to assign
feature confidences, which ensures that the evolution of feature
confidence is temporal consistency by exploiting the feature dis-
criminative abilities in the current frame and feature confidences
in the previous frames. This is the main advantage of our approach
compared with existing feature evaluation methods.

The rest of the paper is organized as follows. Overview of the
method is presented in Section 2; details of feature evaluation
using both Kalman and Particle filters are described in Section 3;
experiments and comparisons of object tracking are given in
Section 4, and conclusions in Section 5.
Ob
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Fig. 1. Object and its b
2. Overview of the proposed approach

In our approach, two kinds of features (HC and HOG) are firstly
extracted to construct a combined feature set frame by frame. Then
the feature evaluation is carried out to calculate the feature confi-
dences, on which the tracking is completed finally.

2.1. Feature extraction and discriminative ability calculation

It is necessary to define object and background regions in which
tracking features will be firstly extracted and then evaluated.

2.1.1. Object and background definition
An object is a rectangle area with h�w pixels and its back-

ground is defined as the surrounding ring area as shown in
Fig. 1. The size of the background area is set as

ffiffiffi
2
p
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w empirically. Object features fFiðx; yÞg; i ¼ 0;1; . . . ;N are extracted
from the object area whereas background features fBiðx; yÞg; i ¼
0;1; . . . ;N are from the pixels in background area, in which N is
the feature dimension.

2.1.2. Discriminative ability calculation
We follow the idea of Collins et al. [19] to measure the discrim-

inative ability of each feature in current frame by computing the
log likelihood ratio between the object feature and its correspond-
ing background feature as follows:

eSi
t ¼max 0;min 1; log

maxðFi
tðx; yÞ; dÞ

maxðBi
tðx; yÞ; dÞ

 ! !
; i ¼ 1 . . . N ð1Þ

Si
t ¼

eSi
tPN

i¼1
eSi

t

i ¼ 1 . . . N ð2Þ

where Fi
tðx; yÞ and Bi

tðx; yÞ are the ith features of the object and the
background at frame t respectively. d is used to avoid dividing by
zero or taking the log of zero, and is set as 0.005 empirically. Intu-

itively, log maxðFi
t ðx;yÞ;dÞ

maxðBi
t ðx;yÞ;dÞ

takes positive values for features distinctive to

the object, and negative for features associated with the back-
ground. The more distinctive to the object a feature is, the largereSi

t is. Therefore, eSi
t represents a feature’s ability of discriminating

the object from its background. Function maxðÞ and minðÞ are used

to keep that eSi
t fells into (0.0, 1.0). Eq. (2) is used to normalize the

discriminative ability.

2.2. Feature confidence calculation and object tracking

Using Eqs. (1) and (2), we can calculate feature discriminative
ability in a single frame. However, it is not proper to directly
harness it as feature confidence since it can be affected by noise
ject
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and the feature’s instability in a long tracking process. Following
the idea of traditional motion models, feature evaluation can be
also formulated with filter frameworks.
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Fig. 4. Object rotation in HOG features extraction procedure. (a1) Object in the first vid
orientation, (b1) candidate object in the tth video frame, (b2) the coarse orientation his
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2.2.1. Feature confidence calculation
We assume a first order Markov model for the feature evalua-

tion, in which wtðiÞ, the ith feature confidence in frame t, depends
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not only on the discriminative ability of the current frame Si
t , but

also the jth feature confidence wt�1ðjÞ in frame t � 1.

wtðiÞ ¼ ft;t�1ðwt�1ðjÞ; Si
tÞ þ ut ð3Þ

where ft,t�1 represents a filter process, such as Kalman filter, in
which case i is equal to j, or Particle filter, in which case i is always
not equal to j, etc. ut is the Gaussian noise function. The implemen-
tation detail of this equation will be presented in Section 3. In each
confidence updating iteration, we use Eq. (4) to normalize the fea-
ture confidences.

wtðiÞ ¼
wtðiÞPN
i¼1wtðiÞ

; i ¼ 1 � � �N ð4Þ

With the definitions above, the flow chart of the proposed approach
can be illustrated as Fig. 2.
Table 1
Feature evaluation using Kalman filter.

1. Initialization (t = 0). Initiate the confidence of each feature

ðw0ðiÞ; Dw0ðiÞÞT ¼ 1
N ;0
� �T

2. Prediction (t > 0). For each feature in the feature set
2.1 Use the Kalman filter to predict the prior confidence of each feature
2.2 Use the HOGC features with prior confidences to guide the object
searching (by Eqs. (5) and (6)) in next frame

3. Correction (t + 1 > 0). After obtaining the best match location of the object
in the next frame

3.1 Extract the instantaneous HOGC features
3.2 Calculate the discriminative ability of each feature
3.3 Calculate the posterior confidence of each feature

4. t = t + 1; Go to step 2 or end the tracking loop

∑ ∑1tW +
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Fig. 5. Feature evaluation procedure using a Kalman filter.

Table 2
Feature evaluation using Particle filter.

1. Initiate the confidence fw0ðiÞji ¼ 1;2; . . . ;Ng of each feature (particle) with equal val
set

2. In frame t, construct the new corresponding sample set for the Particle filter as fol
2.1 Calculate (t > 0) the cumulative probability for each particle by
ctð0Þ ¼ 0
ctðiÞ ¼ ctði� 1Þ þwtðiÞ

�
i ¼ 1;2; . . . ;N

This induces Sett ¼ fði;wtðiÞ; ctðiÞÞ; i ¼ 1;2; . . . ;Ng
2.2 Select (t > 0) M particles (can be repeated) from Sett (resampling); each particle

(a) Generate a random number r 2 ½0; 1:0�, uniformly distributed
(b) Find the smallest i for which ctðiÞP r
(c) Set i0 ¼ i

2.3 Predict (t > 0) the re-sampled particles fi0 ji0 ¼ 1;2; . . . ;Mg by sampling from pðk
distribution of feature as pðkji0Þ � Nð0; dÞ, and d is set as 2N in our experiments

2.4 Weight (t + 1 > 0) wtþ1ðkÞ of each new predicted particle k by the measurement p

as the measurement pðSk
tþ1jkÞ

2.5 Normalize (t + 1 > 0) each feature by Eq. (4) and then obtain a new particle set
3. Object spatial location searching in the t + 1th frame by Eqs. (5) and (6)
4. t = t + 1; Go to step 2 or end the tracking loop
2.2.2. Object tracking
The tracking procedure is performed with an exhaustive search

algorithm in a candidate area Xt predicted by Kalman filter motion
model in the new frame. Our goal is to get the best object location
ðx; yÞt in Xt , solving pððx; yÞt jXt ; ðx; yÞt�1Þ. We apply the Bayesian
inference to obtain the tracking result as follows:

max
ðx;yÞt

pððx; yÞtjXt; ðx; yÞt�1Þ

¼max
ðx;yÞt

Z
pðFtððx; yÞct Þjðx; yÞ

c
t ; Ft�1Þpððx; yÞct jXtÞdc

¼max
ðx;yÞt

Z XN

i¼1

ðpðFi
tÞpðF

i
tððx; yÞ

c
t Þ; F

i
t�1ÞÞ

 !
pððx; yÞct jXtÞdc ð5Þ

where ðx; yÞct is the cth position in Xt , pðFi
tððx; yÞ

c
t Þ; F

i
t�1Þ is the degree

of similarity between the two features, pðFi
tÞ represents the degree

of belief of the ith feature at frame t, which can be approximated by
its confidence wtðiÞ, therefore Eq. (5) can be rewritten as follows:

max
ðx;yÞt

pððx; yÞtjXt; ðx; yÞt�1Þ

¼max
ðx;yÞt

Z XN

i¼1
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c
t Þ; F
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t�1ÞÞ

 !
pððx; yÞct jXtÞdc ð6Þ
3. Details of combined feature evaluation

In this section, we present the details of feature extraction, and
then feature evaluation in Kalman and Particle filters respectively.
Kalman and Particle filters are chosen since they are the most rep-
resentative filter algorithms used in object tracking.

3.1. Combined feature extraction

We use HC in RGB color space and HOG on gray image data to
construct the combined feature set and name it histogram of com-
bined HOG and HC (HOGC). These features are chosen because: (1)
they can be computed efficiently, since the calculation of HC and
HOG are simple statistics of color and gradient orientation occur-
rence probability; (2) they can represent an object effectively be-
cause of their mutually complementary analyzed in Section 1.

3.1.1. Color histogram
To calculate the color histogram, RGB color space, generally

robust to rotation and deformation [26], is chosen for its simplicity.
We first convert the color information of each pixel into a
ue ði;w0ðiÞÞT ¼ i; 1
N

� �T , where N is the number of features of the combined feature

lows

i0 is selected as follows

ji0Þ; in our approach, the transition probability pðkji0Þ is defined as a normal

ðSk
tþ1jkÞ; in this paper, we use the feature discriminative ability (shown in Eq. (2))

fðk;wtþ1ðkÞÞg; k ¼ 1;2; . . . ;N
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quantized value, and then the quantized value is mapped to an in-
dex of a corresponding histogram bin. The number of pixels as-
signed to each bin is accumulated over the whole image patch. In
this paper, each color component (R, G and B) is linearly quantized
into 16 levels and then a histogram of 16 dimensions is extracted
on each component. We obtain a color histogram (HC) of 48
dimensions totally.
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Fig. 6. Feature evaluation procedure of eight features using a Particle filter. Each
blue cycle represents a particle. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. Tracking results in relatively simple backgrounds. (a) Results of color-based track
method.
3.1.2. Gradient orientation histogram
Motivated by the work in [22,23], a histogram of 72 dimensions

is extracted to descript the gradient orientation of an object, called
HOG. Details of HOG feature extraction are described as follows.

HOG is calculated in grayscale space. We first resize the rectan-
gle object region into a normalized window of fixed size, say
32 � 32 pixels. Then, we divide the window into small spatial cells
with the size of 8 � 8 and 4 (2 � 2) such adjacent cells are then
integrated into a block, therefore we can obtain nine blocks num-
bered from r to z, which overlaps each other (shown in Fig. 3c).
Different from the method in [22], each block in this approach con-
structs an 8-bin HOG without local normalization (shown in
Fig. 3b). Each pixel in the block calculates its gradient orientation
oriðh; wÞ based on Eq. (7). The mask for the calculation of
oriðh; wÞ is shown in Fig. 3a. Then we combine the HOG of each
block to obtain a 72-dimension feature for the whole window.

I ¼ Gðr;0Þ�I0

dy ¼ Iðhþ 1;wÞ � Iðh� 1;wÞ
dx ¼ Iðh;wþ 1Þ � Iðh;w� 1Þ
oriðh;wÞ ¼ atan 2ðdy;dxÞ or i 2 ½�p;p�

ð7Þ

where Gðr; 0Þ is a Gaussian smooth function and r is the scale
parameter determined empirically.

To deal with object rotation, we adopt the dominant orientation
method of SIFT [25]. First, a coarse orientation histogram (8 bins
instead of 72 bins) is calculated on the object when the tracking
process is initialized, then the orientation bin with the largest va-
lue is detected and set as the dominant (reference) orientation of
ing. (b) Results of SIFT-based tracking method. (c) Results of HOGC-based tracking



Fig. 8. Tracking results in background that has the similar color with the tracked object. The tracking result is marked with black rectangle and the ground-truth is with black
ellipse, once there are tracking errors. (a) Results of color-based tracking. (b) Results of SIFT-based tracking. (c) Results of HOGC-based tracking.
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the object, which is shown in Fig. 4a1 and a2. During the tracking
process, we can calculate the dominant orientation of a candidate
object and then rotate it to ensure that the instantaneous domi-
nant orientation is consistent with the reference one, shown in
Fig. 4b and c. Then we can calculate the 72-dimension HOG of
the rotated candidate object for tracking. In a word, we normalize
the dominant orientation of each candidate object before extract-
ing its HOG, therefore the extracted HOG is insensitive to rotation
to some extent.
Table 3
Video file list for average DER calculation.

Video test set Video name

VIVID tracking video set redteam.avi
egtest01.avi
egtest02.avi
egtest04.avi

SDL tracking video set xiangshan_ 0032.avi
xiangshan_ 0043.avi

CARVIA tracking video set Browse1.avi
Fight_Chase.avi
OneStopMoveEnter1cor.avi
EnterExitCrossingPaths2front.avi
3.2. Feature evaluation using Kalman filter

Kalman Filter provides a recursive solution to the linear optimal
filtering problem and applies to stationary as well as non-station-
ary environment [11]. Feature evaluation in Kalman filter during a
tracking process [27] is under the following constrains: (1) The
confidence and discriminative ability (defined in Section 2, part
A) of a feature is with Gaussian distribution, reflected by a float va-
lue fallen into [0.0, 1.0]. (2) Features of higher discriminative abil-
ity should have larger confidences, and vice versa.

We first define the state of the Kalman filter for feature evalua-
tion as the combination of the confidence Wt ¼ fwtð1Þ;wtð2Þ; . . . ;

wtðNÞg and its variation ‘‘velocity” DWt ¼Wt �Wt�1 of each fea-
ture, where wtðiÞ is the confidence of the ith feature. Then we de-
fine the measurements of the filter as St ¼ fS1

t ; S
2
t ; . . . ; SN

t g, which
is the discriminative ability vector at frame t. Si

t is the discrimina-
tive ability of the ith feature and it can be calculated by Eqs. (1) and
(2). Then we can obtain the prediction equation and the measure-
ment equation of a Kalman filter as follows:

Wtþ1

DWtþ1

� �
¼

IN�N IN�N

0 IN�N

� �
Wt

DWt

� �
þ ut

ðStÞ ¼ ðIN�N0Þ
Wt

DWt

� �
þ v t

8>>><>>>: ð8Þ

where IN�N is an identity matrix in our experiment. ut and v t are
both Gaussian noises functions. Based on Eq. (8), the feature evalu-
ation procedure using Kalman filter is presented in Table 1.

We illustrate the procedure of feature evaluation using Kalman
filter in Fig. 5. The iterations of Kalman filter can ensure that the
confidence of the feature is temporal consistency.where
L = ðIN�N IN�N 0IN�NÞ is the transition matrix of the prediction
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equation, H = (IN�N0) is the measurement matrix of the measure-
ment equation.

3.3. Feature evaluation using Particle filter

Particle filter is an estimation algorithm for implementing a
recursive temporal Bayesian filter by Monte Carlo simulations. It
represents the posterior state of a moving object by a set of random
samples with associated confidences [13]. The feature evaluation
using Particle filter can deal with confidence or discriminative abil-
ity that is with non-Gaussian and non-linear distribution [28].

The core idea of this procedure is to define a Particle filter for
the combined feature set, and each feature in the set is seen as a
particle. In other words, a feature together with its confidence is
a weighted sample, which is like that used for representing object
moving state [13]. Supposing that there are a set of particles at
frame t, fði;wtðiÞÞg; i ¼ 1;2; . . . ;N, where i denotes the ith feature
(particle) of feature set, wtðiÞ is the confidence of ith feature in
frame t. Given these definitions, we can present the feature evalu-
ation procedure as shown in Table 2:

We show the feature confidence assignment procedure of eight
particles from frame t to t + 1 in Fig. 6. The iteration of this process
can ensure that the evolution of feature confidence is temporal
consistency even the variation of feature confidence is non-linear
and non-Gaussian.

4. Experiments

In this section, experiments with comparisons are carried out to
validate the proposed combined feature set and the feature evalu-
ation approach.

The experimental videos are from VIVID [29], CAVIAR [30] and
our SDL data set [31]. The test videos consist of a variety of cases,
including occlusions between tracking objects, lighting changes,
scale variations, object rotations and complex backgrounds. Some
of the videos are captured on moving platforms and the target ob-
jects include moving pedestrians and vehicles. In the experiments,
no image pre-processing module is employed.
DER ¼ Displacement error between tracked object position and grou
Size of the object
4.1. Validation of the combined feature set HOGC

We compare our proposed combined feature set HOGC with
other two representative ones, including the color [16] and SIFT
[24] features. The test video in Fig. 7 is from the VIVID set, and
the target object is a small jeep with a relative simple background
and uniform object movement. All of the three methods obtained
satisfied tracking results. The result of SIFT-based method has
some instability caused by noisy SIFT keypoints (generated from
scrubs around the object) in the 300th frame shown in Fig. 7b.
Due to the obvious appearance difference between the object and
its background (the object is white and red, while its background
looks green), HOGC and color-based tracking methods obtain bet-
ter tracking stabilization reflected by the stable outline box on the
object.

The second video is also from VIVID set in which there are small
cars moving on the dynamic background. In this video, the car
being tracked first loops around on a runway, then goes straightly
and speeds up. The appearance of the car changes remarkably in
both size and orientation during the tracking process. The color be-
tween the car and its background is also similar. All these make the
tracking very challenging. As shown in Fig. 8a, color-based tracking
has some tracking instability in the 200th frame and loses the
tracked object in the 700th frame because of the similar colors be-
tween the car and its background. Since the SIFT feature can repre-
sent the car well, SIFT-based method obtains good results shown in
(Fig. 8b). Our combined feature set, for representation of both color
and contour, also obtains satisfied tracking results (Fig. 8c).

The main drawback of SIFT is its low computational efficiency
which make it not appropriate to a real-time tracking application.
In the experiments, we find that the proposed HOGC-based meth-
od can work almost real time (about 20 frames per second aver-
agely) on a computer with Pentium IV CPU (2.4G), which is
almost as fast as the color-based method, and is much faster than
the SIFT-based one.

To quantitatively evaluate the proposed combined feature set,
we define a criterion entitled the relative displacement error rates
(DER).
nd-truth



Fig. 10. Tracking results of some occlusions and scale variation. (a) Results of color-based tracking method. (b) Results of variance ratio feature shift method. (c) Results of
Peak difference feature shift method. (d) Results of our proposed tracking approaches based on HOGC feature evaluation in Kalman filter and (e) in Particle filter.
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In experiments, we use the average DER of 10 video clips (listed
in Table 3) to reflect the tracking performance. The lower the aver-
age DER is, the better the tracking performance. The tracking re-
sults of the three features are shown in Fig. 9. It can be seen that
the average DER of HOGC-based tracking, which is close to that
of the SIFT-based tracking (about 0.05–0.2), is smaller than that
of the color-based tracking (about 0.10–0.25) in almost the whole
tracking process.
4.2. Validation of feature evaluation in filter framework

We compare our approaches (object tracking based on feature
evaluation in Kalman filter and Particle filter) with other three
methods, including color-based tracking method (no feature eval-
uation) [16], Variance ratio feature shift [19], and Peak difference
feature shift tracking methods [19]. The last two are representative
feature selection/evaluation methods for adaptive visual tracking.



Fig. 11. Tracking results in complex backgrounds. The tracking results are marked with black rectangle and the ground-truth is with white rectangle, once there are tracking
errors. (a) Results of color-based tracking method. (b) Results of variance ratio feature shift method. (c) Results of Peak difference feature shift method. (d) Results of Our
proposed tracking methods based on HOGC feature evaluation in Kalman filter and (e) in Particle filter.
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In the experiment shown in Fig. 10, the main challenges of
tracking in this video sequence arise from partial occlusions of
the object by other pedestrians and scale variation. Color-based
(Fig. 10a) tracking has some instability shown in the 665th frame
and the 829th frame, where there are illumination changes and
the color between the object and the mimic object are quite indis-
tinctive. Although the variance ratio and Peak difference feature
shift methods (Fig. 10b and c) can distinguish the object from its
background to some extent, there are tracking errors in 829th
frame. It can be seen that our proposed approaches (Fig. 10d and
e) obtain the best tracking results. The target pedestrian, marked
with white box, is tracked steadily all the duration.
In Fig. 11, we illustrate the challenging test video in which the
background has the similar color to the tracking object and at the
same time, there are some small trees which are quite similar to
the object in contour. All five methods mentioned above are tested
on this video for the comparison purpose, and the top-left rectan-
gle gives the tracking results in a large view. It can be seen that our
proposed methods are able to track the object robustly (shown in
Fig. 11d and e) even in such a complex circumstance. The color-
based tracking method (Fig. 11a) lost the tracked pedestrian in
the 240th, 280th, 320th, 360th and 400th frames. Variance ratio
and Peak difference feature shift tracking methods with online fea-
ture selection can track the object in some frames, while it lost the



Fig. 11 (continued)
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object in the flowing frames (such as the 320th, 360th and 400th
frames in Fig. 11b and the 240th, 360th and 400th frames in
Fig. 11c). The reason may be that these methods do not consider
the temporal consistency of feature evolution, which will make
them suffer from unstable feature confidences caused by mimic
objects in the background.

In the experiments, we use the average DER (10 video clips
listed in Table 3) to show the performance of each method. There
are various factors that make the tracking challenging: different
viewpoints (most of these sequences are captured by moving cam-
eras), illumination changes, variations of the objects and partial
occlusions. The results of the five methods are shown in Fig. 12.
It can be seen that the average DER of our proposed approaches
(about 0.1–0.15) is much lower than those of the other methods,
which validate that the object tracking with the proposed feature
evaluation approach has a better adaptation.
5. Conclusions

Online feature evaluation is very important to improve the
adaptability of visual object tracking. In this paper, we propose a
novel feature evaluation approach and then give implementations
of the approach in Kalman and Particle filters respectively. Exper-
imental results with comparisons are provided, which validates the
effectiveness of both the combined feature set and the feature eval-
uation approach. The results also indicated that object tracking
with the proposed combined feature evaluation outperforms the
existing methods. The proposed approach also shows its adapta-
tion when the background is complex or there are object/back-
ground appearance variations.

The new concepts and techniques introduced in this paper in-
clude HOGC, which is the combined feature set of HC and HOG,
processing of object rotation, and feature evaluation using filter
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Fig. 12. Average DER of five tracking methods.
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frameworks. In particular, the combined feature set can be easily
extended by integrating other features, such as texture, feature
points, and so on. In the evaluation process, we extend the function
of tracking filters, which is novel in visual object tracking research.

A known disadvantage of the proposed feature set is that it can
not cope with large scale changes of the target object, for the track-
ing template updating issue [32] is not considered, and the proposed
tracking approach cannot handle multiple objects tracking at pres-
ent either. These issues should be considered in the future work.
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Appendix A

When we use Kalman filters for both movement modeling and
feature evaluation, we can select a lump filter model or separated
filter models. In our previous work [27], we have used a lumped
Kalman filter model for the feature evaluation and the movement
(location and velocity) of the tracked object as shown in Eq. (9).
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where Post = (x, y)t is the predicted location of the tracked object
and DPost ¼ Post � Post�1. mPost = (mx, my)t is the location obtained
during the matching procedure. And M is 2, representing a two
dimensional position. Other symbols have same meaning as Eq. (8).

Different from [27], here we use two separate Kalman filters for
object tracking. However, according the definitions of the transi-
tion matrix and measurement matrix in Eq. (9), with a matrix par-
titioning operation, the lumped Kalman filter can be equally
separated as the following two Kalman filters:
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While the left one Kalman filter is equal to the Eq. (8), which is
used to evaluate the feature confidence and the right one Kalman
filter is a traditional one, which is often used to model the move-
ment of the tracked object [12]. Therefore, object tracking can be
performed either using a lumped Kalman filter (shown in Eq. (9))
or using two separate Kalman filters (one is for the movement of
the candidate area of tracked object, the other one is for the feature
evaluation during the tracking process), which is proved equal in
theory, while we select a separated one in this paper. In our previ-
ous work [27], we have tested the lump model and similar tracking
results are reported.
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