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Abstract—Human detection in images is challenged by the
view and posture variation problem. In this paper, we propose
a piecewise linear support vector machine (PL-SVM) method to
tackle this problem. The motivation is to exploit the piecewise
discriminative function to construct a nonlinear classification
boundary that can discriminate multiview and multiposture
human bodies from the backgrounds in a high-dimensional
feature space. A PL-SVM training is designed as an iterative pro-
cedure of feature space division and linear SVM training, aiming
at the margin maximization of local linear SVMs. Each piecewise
SVM model is responsible for a subspace, corresponding to a
human cluster of a special view or posture. In the PL-SVM, a
cascaded detector is proposed with block orientation features and
a histogram of oriented gradient features. Extensive experiments
show that compared with several recent SVM methods, our
method reaches the state of the art in both detection accuracy
and computational efficiency, and it performs best when dealing
with low-resolution human regions in clutter backgrounds.

Index Terms— Classification, object detection, piecewise linear,
support vector machine.

I. INTRODUCTION

ETECTION of humans in images and video frames is an

important problem in the area of image based sensing
with applications such as robotics, entertainment, surveil-
lance, and pedestrian warning for driving assistance [1]-[5].
Although the detection of humans in some common views and
in static video background has been greatly put forward in
recent years, it is still a challenging problem in the situations
of moving cameras, complex backgrounds, and in particularly,
large variations of views and postures.

In existing human detection methods, feature repre-
sentation and classifier design are two main problems
being investigated. Visual feature descriptors have been
proposed for human detection including Haar-like features [5],
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HOG [6], v-HOG [7], Gabor filter based cortex features [8],
covariance features [9], Local Binary Pattern (LBP) [10],
HOG-LBP [11], Edgelet [12], Shapelet [13], Local Receptive
Field (LRF) [14], Multi-Scale Orientation (MSO) [15], Adap-
tive Local Contour [16], Granularity-tunable Gradients Par-
tition (GGP) descriptors [17], pose-invariant descriptors [18].
A most recent research demonstrates the superior performance
when using mixture of different kinds of visual features,
motion and depth information [19].

The extracted features on labeled samples are usually fed
into a classifier for training. Linear SVM is the most popular
classifier with several reported landmark works for human
detection [6], [8], [11], [19]. However, when we need to
detect multi-view and multi-posture humans simultaneously
in a video system, the performance of a linear SVM often
drops significantly. It is observed in experiments that humans
of continuous view and posture variations form a manifold,
which is difficult to be linearly classified from the nega-
tives. An algorithm that requires multi-view and multi-posture
humans to be correctly classified by a linear SVM in the
training process often leads to over-fitting. Some non-linear
classification methods such as Kernel SVMs [20] are options
to handle this problem, but they are generally much more
computationally expensive than linear methods. In addition,
the use of the kernel trick in a very high-dimensional feature
space, such as a 3780 dimensional HOG feature space, may
magnify the curse of dimensionality.

On the other hand, some approaches use a divide-and-
conquer strategy to deal with the multi-view and multi-posture
problem, by first dividing training positives into sub-classes
and then training multiple models for detection [21], [22].
In [21], [22], tree structure and pyramid boosting classifiers
are developed to detect multi-view humans in images. These
divide-and-conquer strategies can reduce empirical error in
training process and improve the detection performance in
some cases, but sometimes they also bring higher structural
risk and more false positives.

Another solution to the multi-view and multi-posture prob-
lem is to segment a human body into parts [2], [23], [24],
considering that each part has smaller deformation, lower
dimensionality and non-linearity, and therefore can be better
detected with a linear classifier. In [2], a deformable part-based
model (DPM) is proposed for human detection. Human parts
and their spatial bias are modeled with a structure SVM with
latent variables (latent SVM). When performing training or
detection, a local searching operation is carried out to optimize
the location of each part-based model, which is called local
deformation. By the local deformation, the detection avoids
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suffering from the view and posture variations. In [24], an
extension of the DPM is proposed to allow sharing of object
part models among multiple mixture components as well as
object classes. This results in more compact models and
allows training examples to be shared by multiple components,
reducing the effect of a training set of limited size. The DPM
methods contribute an elegant framework for object detection,
showing state-of-the-art performance on human detection. But
they suffer from low resolution images of human objects, on
which local model optimization has little significance.

In machine learning research, piecewise and localized
SVMs have attracted much attentions [25]-[27], [28], [29],
due to their superior performance over global kernel SVMs.
In [26], the authors derive the upper bound of the structure
risk of a piecewise SVM. However, the problem of how to
construct a piecewise decision boundary in a high-dimensional
feature space is not well discussed. In [28], cross distance
minimization algorithm (CDMA) is designed to compute hard
margin of non-kernel SVMs. In [29], multicategory SVMs are
proposed to extend the binary SVM to the multicategory case,
which is essentially different from our proposed piecewise
linear SVM (PL-SVM) method in both the theoretical basis
and the training procedure. In terms of the theoretical basis,
the multicategory SVMs are developed to approximate the
Bayes rule for multicategory classification purpose. Our PL-
SVM method exploits the piecewise discriminative function
to construct a non-linear classification boundary that can
discriminate multiple positive sub-classes from the negative
class. In the training of the multicategory SVMs, the method
of Lagrange multipliers is employed to solve the objective
equation of the dual problem. In the training of PL-SVM,
nearest point analysis (NPA) on convex hulls together with
an iterative linear SVM solution is used, which guarantees
the max-margin of the final classifier. In [27], Cheng et al
propose a profile SVM (P-SVM) to reach local linear clas-
sification, using the minimal distance to each pre-calculated
cluster center to decide which local SVM a sample should
belong to. Although profile SVM has the advantages of non-
linear discrimination and sample division in a low-dimensional
feature space, its sample division strategy suffers from the
curse of dimensionality. In addition, the max-margin property
of the profile SVM is not fully considered in the classifier
training procedure.

In this paper, pedestrian detection is formulated as a non-
linear classification problem in a high-dimensional feature
space. The piecewise linear SVM (PL-SVM) method is
introduced into multi-view and multi-posture human detection
for the first time. Our PL-SVM is essentially different from
other piecewise SVMs in the feature space division and
model training strategy. When training the PL-SVM, with
a membership degree maximization criterion, the feature
space is divided into subspaces,' each of which can be better
discriminative for a linear SVM. This approach ensures a lower
empirical risk than using only one linear SVM. The training of
the PL-SVM is an iterative division of training samples and the

'In this paper, a subspace of a space is a part of the space. They have the
same dimensionality.
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feature space. The convergence of the iterations is guaranteed
by the monotonically increasing and bounded margins of
the PL-SVM, which also guarantees that the PL-SVM is a
maximal margin classifier, and thus has a small structural
risk. This further ensures the generalization ability and the
performance of the PL-SVM, providing a simple and effective
way for multi-view and multi-posture human detection. A
new kind of feature, called Block Orientation (BO), is
proposed as a complement to the popular HOG features. BO
and HOG features are incorporated with two cascaded PL-
SVMs, improving both the accuracy and efficiency in human
detection.

The remainder of this paper is organized as follows:
PL-SVM modeling and training are presented in Section II.
Human detection with the proposed PL-SVM is described in
Section III. Experimental results are provided in Section IV.
Section V concludes the paper.

II. PIECEWISE LINEAR SUPPORT VECTOR MACHINE

In this section, we present the PL-SVM and explain how
to train it, given a training sample set X = {(x,, y,)},n =
1,..., N, where x, is a sample feature vector, y, € {—1, +1}
denotes the sample label and N denotes the number of
samples.

A. PL-SVM Model

A PL-SVM, made up of K linear SVMs, is described as a
piecewise linear function

f(x) = argmax {Cy(x)} ey
fie(x), xey
where fx(x) = wkT -x +br,k =1,...K, represents the kth
local linear SVM with normal vector wkT and threshold by.
In (1), Qi = Q,j U Q7™ denotes the kth subspace occupied by
a subset of the training samples as shown in Fig. 1.

In (1), Ci(x) is the membership degree of a sample x to
Q.. From the viewpoint of probability, the membership degree
is defined as

Cr () = Pe(y = 1]x) @)

where Py (y = 1|x) is the outputted probability of a sample x
being a positive when it is inputted into the kth linear SVM.
The probability is defined as the functions of the SVM output
as follows

1.0

B = = e —e By
where Ay and By are two parameters calculated with a
maximum likelihood estimation on the training subset [30],
and Ay - fx(x) + By is called the parameterized sample-to-
hyper-plane distance. By (2) and (3) we know that the larger
this distance is, the larger the probability, and then the larger
the membership degree to the corresponding SVM, as shown
in Fig. 2.

With the membership degree maximization criterion in (1)
and (2), each linear SVM is responsible for a subspace for
classification. The final non-linear classification boundary in
the whole feature space consists of linear hyper-planes, as
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Fig. 1. Illustration of the PL-SVM and feature space division. subspaces
are bounded with dotted lines and QT, Qg’ denote the positive subspaces
corresponding to linear SVMs 1, 2, respectively, with Q™ denoting negatives.
Different positive subspaces are related to samples of different views and
postures. Classification boundary of the PL-SVM is marked by bold line
segments.

A, - f[,(x)+ B, —> ©

Normal
vector P(y=1|x)—1.0
C.(x)—1.0
X
S () A, - f.(x)+B, —0
SVM hyper-plane P(y=1|x)—0.5

Ak .f}c(x)+Bk —> —®©
B(y=1]|x)—>0.0
C,(x) —> 0.0

Fig. 2.  Relations among parameterized sample-to-hyper-plane distance,
classification probability, and membership degree.

illustrated in Fig. 1. When this criterion is used to divide the
feature space and assign positive samples in an iterative train-
ing, the parameterized sample-to-hyper-plane distance will be
enlarged and then the SVM margins will be also enlarged step
by step. This is consistent with the maximal margin principle,
ensuring that the PL-SVM keeps the essence of the original
SVM approach.

When performing classification, (1) can be converted to a
PL-SVM discriminative function

F(x) = Sign (f(x)) )

with a sign function for discrimination and detection.
Given a training set X = {(x,,, y»)},n =1,..., N, we need
to solve the following multi-objective programming problem
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Fig. 3. Initial human sample division in a 3-D manifold embedded space.
Points of different colors denote samples of different subsets.

to train a PL-SVM:

fnl é:"K
min (w2 +4- > |, ...omin | Jlwgl?+4-> ]
ni ng
sit. yp - F(xy,) —1.04&, >0, & >0,
n=1,2,...,N. )

The above objective function assumes that all of the local
SVMs in a PL-SVM are equally important. n; denotes the
sample index in the kth sample subset. A is a parameter to
balance the training error and the SVM margins, ¢ is the slack
factor and F(x) is the PL-SVM discriminative function defined
in (4).

Since the memberships of samples to local SVMs fi(x) =
wl - x + b,k = 1,...,K are undermined, (5) is a pro-
gramming problem with undetermined linear constrains. It can
also be regarded as a kind of latent SVM with latent sample
memberships. To solve (5), an iterative training procedure is
described in the following section.

B. PL-SVM Training

Before training, human samples are initially divided into
subsets with a K-means clustering algorithm in a manifold
embedded space, as shown in Fig. 3, while all negatives are
assigned to each of the subsets. Having been clustered into
initial subsets, human samples assigned to the same subset
have smaller differences, leading to a better sample division
than a random one.

The local linear embedding (LLE) algorithm [31] is
employed to construct the human manifolds. LLE computes
the low-dimensional and neighborhood-preserving embed-
dings of the high-dimensional samples by mapping them into
the low-dimensional space. Given a set of human samples in
the high-dimensional feature space, LLE starts with finding
nearest neighbors based on the Euclidean distance. Then LLE
identifies the optimal local convex combinations of the nearest
neighbors to represent each original sample. Finally it obtains
an embedded space by solving a sparse eigenvector problem.
More specifically, the d eigenvectors associated with the d
smallest non-zero eigenvalues provide an ordered set of an
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orthogonal base [31], as shown in Fig. 3 where d is set to 3
for easy visualization.

The reason of performing clustering in the embedded space
instead of in the original high-dimensional feature space is to
make the computation tractable. Similar views/postures form
a manifold and the spatial topology of them in the embedded
space is an approximation to that in the original space.
Therefore, we can initially divide the samples by clustering in
the embedded space. The reason of performing clustering in
the embedded space instead of in the original high-dimensional
feature space is to make the computation tractable. Similar
views/postures form a manifold and the spatial topology of
them in the embedded space is an approximation to that in the
original space. Therefore, we can initially divide the samples
by clustering in the embedded space. Next we develop the
following iterative training procedure to obtain an approximate
optimal solution to the problem in (5).

C. Training Convergence Analysis

Each of the linear SVMs of the PL-SVM is trained
by sequential minimization optimization, with the following
objective function:

1 2 i)lk
min 5|Jwil]* + 4 - >

s
St yn - Sign (fi(xn)) — 1.0+ &, =0,
énkz()a nk:192""9Nk

where ny denotes the sample index in the kth subset and Ny
is the number of the samples of the subset. The convergence
of the PL-SVM training is analyzed by the nearest point
algorithm (NPA) [32]. Let us construct the positive convex
hull Uy and the negative convex hull Vi for the kth subset,
shown as the polygons in Fig. 4. Also let ity € Uy and vx € Vi
such that

(6)

min
ueUy,veV

ik — okl = llu —oll. (7

Then the problem of finding iy and o is equivalent to
finding the solution of kth SVM [32]. If (i, l;k) is the solution
of the kth linear SVM fi(x) = 1I)kT - x + by, by using the
fact that from the maximum margin 2/||wk|| = ||liux — Okl|
and Wy = J - (i — vy) for some J, the relation between the
normal vector and the nearest point pair (ix, 0x) can be derived
as [32]:

2 - el = 1okl
Wi - 0

— 8
=00, e

By (8), we know that the margin of the kth SVM is equal to
the distance between the nearest point pairizy and ox. When
we perform sample re-assignment in the training procedure
in Algorithm I, a sample is reassigned to the subset of the
SVM, to which the membership degree of the sample is the
largest. According to (2)—(3), the parameterized sample-to-
hyper-plane distance of this sample to the hyper-plane of this
SVM is also the largest. In addition, step 2.3 of Algorithm I
makes sure that the distance between the nearest point pair
does not decrease. These ensure that the distances between
the nearest point pairs, (ig,0x),k = 1,..., K, increase
monotonically (or non-decrease monotonically) in the training

itk — Okl|?

Algorithm 1 PL-SVM Training

Definitions: 7: Iteration number; R®: Number of reassigned
positive samples in iteration ¢; r): Reassigned sample ratio
in iteration ¢.
1. Initialization

Given a training human object set X = {(x,, v,)},n =

1,..., N, and K initial subsets {X,((O)},k =1,...K, with

K
X=U {X,EO)}, train K linear SVMs { fy ()}, k=1,..., K,

as the initial PL-SVM model. Set ¢ = 0.
2. Iteration
2.1. Calculate the membership degrees Ci(x,),k =

1,..., K, of every feature vector x, to the K linear SVMs
in the PL-SVM by (2) and (3).

2.2. For a random and unselected positive sample (x,, y,),
select the k that maximizes the membership degree of x, as
k = argmax{C,,(x)},m=1,..., K. Set Cx(x) = 0.0.

2.3. Check whether the assignment of x, to the kth subset
reduces the distance between the positive and negative convex
hulls?. If it does, goto 2.2; otherwise assign x, to the kth
subset.

2.4. Train the linear SVMs { fx(x)},i = 1,..., K, using the
current subsets {X,Et)} k=1,...,K.

2.5. If the reassigned sample ratio r*) is larger than a pre-
defined threshold 7, then + <« ¢ + 1 and go to step 2.1;
otherwise go to step 3.

3. Output

K sample subsets X,((’) ,k=1,...,K, and a trained PL-
SVM consisting of the K linear SVMs.

Step 2.3 in Algorithm I is used to ensure the monotonous
increase of the SVM margins and thus the convergence of the
algorithm. See the next section for the detail. The threshold ©
is set to 0.02 empirically.

procedure. Consequently the margins of the SVMs increase
monotonously. Since the margins are bounded, the training
algorithm is thus convergent.

Fig. 4 shows an example of PL-SVM training with two
subsets. The samples denoted by filled-in circles belong
to subset 1 and the samples denoted by open circles belong
to subset 2. The samples labeled by 1, 2, 3, 4 and ] form
the positive convex hull for subset 1. The samples labeled
by 5, 6, 7 and 8 form the positive convex hull for subset 2.
Suppose that at current iteration, we obtain two nearest point
pairs (11, 01) and (i3, 03). Then they are used to generate the
hyper-planes of SVM1 and SVM2. After steps 2.1, 2.2 and
2.3 in Algorithm I, the samples are reassigned to subset 1
or subset 2 with the maximization of membership degree
criterion in (4). It can be seen from Fig. 4(b) that samples 1, 2,
5 and 7 are assigned to subset 2 and samples 3, 4, 6, 8 and i}
are assigned to subset 1. With the new subsets, new positive
convex hulls are constructed, as shown in Fig. 4(b). Then with
the negative hull and new positive convex hulls, new SVMs

2The convex hull for a set of points in a real vector space is the minimal
convex set containing the set, following the method in [32].
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Fig. 4. [Illustration of sample reassignment and convex hull changes in the training of two linear SVMs where (i1, 01), (i2, 02), (12/1, 6/1), and (ﬂ,Z, 5,2) are
nearest point pairs. (a) Convex hulls and their corresponding SVMs in the current iteration. (b) subsets after sample re-assignment. (¢) Convex hulls and their

corresponding SVMs in the next iteration.
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HOG and BO feature extraction. (a) Human example. (b) HOG cells. (c) HOG feature extraction in a block. (d) BO feature extraction in a cell.

(e) Stroke pattern in a cell (enlarged) with noise and its HOG and BO features. (f) Region pattern in a cell with noise and its HOG and BO features.
(g) Visualization of the HOG features multiplying with the SVM norm vector. (h) Visualization of the BO features multiplying with the SVM norm vector.

are trained, as shown in Fig. 4(c). It can be seen that after
the iteration, the margins of the SVMs increase or remain the
same.

III. HUMAN DETECTION

The proposed PL-SVM is incorporated with two kinds of
features for human detection. A cascade detector is designed
to improve detection performance.

A. Feature Representation

HOG features, proposed by Dalal and Triggs [6], are
adopted for our application. As shown in Figs. 5(a)—(c), a sam-
ple of 64 x 128 pixels is divided into cells of size 8 x 8 pixels,
each group of 2 x 2 cells is integrated into a block in a
sliding fashion, and blocks overlap with each other. To extract
HOG features, we firstly calculate the gradient orientations
of the pixels in the cells. Then in each cell, we calculate a
9-dimensional histogram of gradient orientations as the fea-
tures. Each block is represented by a 36-dimensional feature
vector, which is normalized by dividing each feature bin
with the vector module [6]. Each sample is represented by

105 blocks (420 cells), corresponding to a 3780-dimensional
HOG feature vector.

We also propose a new kind of features, called Block
Orientation (BO) features, derived from Haar-like features, as
a complement to the HOG features for human detection. Each
of the 420 cells is first divided into left-right and up-down
sub-cells as shown in Fig. 5(d), and then the horizontal and
vertical gradients of the cell are calculated by

Bh= max 1.(X) — I.(X
0 D DR S O DR 209
X e left subcell X e right subcell
Bv= max I.(X) — I.(X
lmax 4D LX) > LW
X e up subcell X e down subcell
©)

where I.(X) is one of the R, G and B color values at pixel X.
The BO features are the normalizations of BAh and Bo:

B2+ Bh2+¢
B2+ Bh2+¢

BO, = Bh/

BO, = Bv/ (10)
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Fig. 6. Flowchart of PL-SVM training.
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Fig. 8. Cascaded classification with two PL-SVMs on BO and HOG features,
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where ¢ is a constant to reduce noise effect. Its value is set as
10.0 x (the size of a cell), empirically.

Since the BO features are extracted on a whole cell, it
is discriminative between stroke and region patterns and can
depress local texture and noise. From Figs. 5(e) and f, it can
be seen that for the stroke and region patterns (with noise),
the HOG features are indistinctive, while the BO features can
distinguish one from the other very well. In human detection,
if only HOG features are used, some stroke patterns such as
tree branches and railings maybe detected as parts of human
bodies. With the BO features as a complement to the HOG
features, we can reduce these false detections.

B. Cascade Detector With PL-SVMs

Given a set of training samples, we train two PL-SVM
models, one with the BO features and the other with the HOG
features, as shown in Fig. 6. In the detection procedure (Fig. 7),
we apply a histogram equalization and median filtering of
radius equal to 3 pixels on the test image firstly, as the
preprocessing. Then the test image is repeatedly reduced in
size by a factor of 1.1, resulting in an image pyramid. Sliding
windows are extracted from each layer of the pyramid. In each
window, the BO features are extracted and tested with the
PL-SVM in the first stage. If the window is classified as a
human, the HOG features will be extracted and tested with
the PL-SVM of the second stage to finally decide whether it
is a human or not. If the window is classified as non-human
in the first stage, the second stage will not be used, as shown
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Fig. 9. Examples of positive and negative samples from the SDL dataset.
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Fig. 10. Determination of the piecewise number K by cross validation.

in Fig. 8. This scheme ensures that most of the windows
are rejected in the first stage, which therefore leads to high
detection efficiency. To ensure that most of the positives can
pass to the second stage, we use a small threshold for the PL-
SVM in the first stage. Adjusting the threshold in the second
stage can balance the detections of false positives and false
negatives.

IV. EXPERIMENTS

In this section, we evaluate the proposed PL-SVM and
compare it with the linear SVM and three state-of-the-art
SVMs, kernel SVM, profile SVM and latent SVM, for human
detection. When training the local linear SVMs in the iterative
PL-SVM training of algorithm I, we use LIBLINEAR [33],
which is designed for linear classification of a large amount of
data. Both BO and HOG features are calculated with integral
image methods on color [5] and gradient images [6] to improve
the efficiency.

Three datasets are used in the experiments. The first one is
the SDL dataset with 7550 human samples and 5769 negatives,
which is publicly available [34]. In the dataset there are 258
images for testing [34]. The second one is the TUD-Brussels
dataset [35], with 1167 training positives, 6759 negatives, and
508 test video frames. In our experiments, the number of train-
ing positives is doubled by flipping the images horizontally.
The third one is the INRIA dataset [6], which is widely used
for human detection evaluation in recent years. It has 288 test
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Fig. 12.
or back views with legs apart. (b) Frontal or back views with legs close
together. (c) Side views with legs apart. (d) Side views with legs close together.
(e) Standing views different from (a)—(d). (f) On bicycles.

Human examples of six subsets from the SDL dataset. (a) Frontal

images, and its training set includes 2478 positives and 12180
negatives boosted from 1218 person-free photos.

The INRIA and SDL datasets contain human samples of
multi-views and multi-postures (such as running, sporting, and
bicycling) as shown in Fig. 9. The TUD-Brussels dataset has
human samples of multiple views and postures captured from
a practical driving platform. Although the samples in these
datasets cannot cover all the views and postures, this large
amount of samples are able to construct different manifolds.
The convincible results in the experiments described later
validate our approach.

A. Parameter Setting of PL-SVM

To determine the piecewise number K of a PL-SVM, we
design a ten-fold cross validation. Cross validation accuracies
with different piecewise numbers are tested and the K with
the highest accuracy is selected, as shown in Fig. 10. In the
experiments, it is found that the more the training samples, the
larger the value of K is. As shown in Fig. 10, the piecewise

CROSS VALIDATION ACCURACY OF FOUR SVM METHODS

Classification Cross Validation Accuracy on Av\e,rzlli%le tiCrrcl)ss

Methods SDL, TUD, and INRIA Datasets aucato

Accuracy
96.73%

Linear SVM [6] 97.31% 96.78%
96.31%
97.46%

Kernel SVM [20] 98.449% 97.87%
97.71%
98.60%

Profile SVM [27] 99.12% 98.69%
98.37%
99.10%

PL-SVM 99.46% 99.19%
99.01%

number for the SDL dataset should be six, and those for the
TUD-Brussels and INRIA datasets are both four. In general,
it is not true that a larger K is better due to the over-fitting
problem.

The training convergence of the PL-SVM is also validated
by our experiments. It can be seen from Fig. 11 that at the first
iteration, there are large ratios of samples being reassigned.
After about ten iterations, the ratios are close to zero (smaller
than the threshold 0.02 for stopping the algorithm), showing
the convergence of the training procedure.

Fig. 12 contains human examples from subsets of the SDL
dataset in different views and postures when K = 6. We can
see that the samples in each subset have similar appearances,
showing that in the PL-SVM training, the division of the
samples is significant. Therefore, it is expected that when these
subsets are used to train the PL-SVM models, both the training
and detection performances can be improved.

B. Comparison of PL-SVM With Other SVMs

To assess the PL-SVM classification method, we design
another ten-fold cross validation experiment, as shown in
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TABLE III
TRAINING AND DETECTION EFFICIENCY OF FIVE SVM METHODS?

Traini Training
ining Time After
Time Five .
Method Wltl:lOl]t Rounds of Detection Speed
Boosting of . (Images/Second)
Neati Boosting of
egatives Neeati
(Hours) egatives
(Hours)
Linear SVM [6] 0.034 0.19 0.92
Intersection
Kernel 0.45 2.79 0.18
SVM [20]
Profile
SVM [27] 0.17 1.03 1.50
Latent SVM [2] — 32 0.40
0.33 (PL-SVM
of HOG)
PL-SVM 0.15 0.95 1.6 (Cascaded
PL-SVMs of
BO and HOG)
TABLE IV

RECALL AND FALSE POSITIVE RATES WITH DIFFERENT THRESHOLD
VALUES IN THE FIRST STAGE ON THE INRIA DATASET

Threshold
in the First
Stage
Recall Rate
of the First
Stage
FPPI of the
First Stage

-04 | =02 | 0.1 0 0.1 0.2 0.4

98.2% | 97.4% | 97.1% | 95.6% | 95.2% | 92.3% | 87.7%

68.2 47.8 22.5 13.6 12.1

Detection |\ o5 | 08 | 12 | 15 | 16 | 18 | 21
Speed

Table 1, to compare three SVM methods with the proposed
PL-SVM. It can be seen that on all the datasets the proposed
PL-SVM outperforms the linear, kernel and profile SVMs.

The accuracies of the PL-SVM are 98.79%, 99.13% and
98.53% on the three datasets, respectively, on average 1.3%
higher than the kernel method, which builds a histogram
intersection kernel and reports good human classification
performance. When compared with the recent local linear
SVM (Profile SVM) [27], the PL-SVM has a 0.5-1.0% higher
performance. As it is more and more difficult to improve the
cross validation accuracy when it is close to 100%, 1.0-2.0%
accuracy improvement is significant. When both HOG features
and BO features are used, it can be seen from Table 2 that
higher performances are observed in most cases. Again, the
PL-SVM obtains the best accuracies. This validates that the
BO-HOG features are more effective than HOG alone for
human detection.

Given M dimensional features, the time complexity of a
linear SVM classification is O(M), as it needs only one
inner product operation between the test feature vector and
the normal vector. The time complexity of a kernel SVM

3n the experiments, the program of Intersection Kernel SVM is downloaded
from the website http://ttic.uchicago.edu/~smaji/projects/fiksvm/. The pro-
gram of latent SVM is from the website http://www.cs.brown.edu/~pft/latent/.
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Fig. 15. Detection performance and comparison on the TUD-Brussels dataset.

classification is O(SM), where S is the number of support
vectors, as it needs S inner product operations between the test
feature vector and the support vectors. The time complexity
of the PL-SVM is O(K M), by testing the test feature vector
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Fig. 16. Detection examples from the SDL and INRIA datasets obtained by the PL-SVM.

with K linear SVMs. Since K << S in general, the time
complexity of the PL-SVM is much lower than that of the
kernel SVM. When performing human detection, the first PL-
SVM in Fig. 8 uses the BO features, which have a much lower
dimensionality than the HOG features.

The training and detection efficiency of our proposed
method is tested and compared with other four SVM methods.
As shown in Table 3, except the linear SVM, PL-SVM is more
efficient in both training and testing than the others. PL-SVM
is about three times as fast as Intersection Kernel SVM and
latent SVM in training. When performing detection, it runs
at a speed about 1.6 images per second on average on a PC
with an Intel CORE i5 CPU (fastest among all). It can be
seen from the last column that the usage of BO features in the
cascade detection boosts the detection speed from 0.33 images
per second to 1.6 images per second. This speed is about four
times as fast as the state-of-the-art latent SVM [2].

C. Human Detection Performance

In our implementation of PL-SVM, all the by (threshold)
of the local linear SVMs are set the same in each stage.

The threshold in the first stage controls the positives passed to
the second stage. To ensure that most of the positives can be
passed to the second stage, we use a small threshold value for
PL-SVM in the first stage. It is not true that a smaller value
always leads to better performance since it increases negatives
passed to the second stage as well as decreases the detection
speed. Table 4 shows some examples how the threshold affects
the results. When it is 0.1, the first detection stage has a
95.2% recall rate with a 15.7 false positives per image (FPPI).
When it is set to 0.2, both the recall rate and FPPI are
reduced.

On the SDL and INRIA datasets, we evaluate the PL-SVM
method with recall rate vs. false positives per image (FPPI).
Adjusting the threshold in the second stage can balance the
detections of false positives and false negatives. Comparisons
with the linear SVM, kernel SVM, profile SVM and latent
SVM [2] are also reported. It can be seen from Figs. 13 and 14
that our PL-SVM (K = 4 for INRIA and K = 6 for SDL)
with HOG features outperforms the linear, kernel and profile
SVMs and is comparable to the latent SVM.

In Fig. 15 we compare our method (K = 4) on the TUD-
Brussels dataset with the other SVMs. The PL-SVM obtains
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Results by the latent SVM

Image 011-2

Results by the PL-SVM
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k \III;v i

Results by the latent SVM

Image 490-3

Fig. 17.

the best result overall. When the FPPI is close to 0.1, the recall
rate of our method exceeds the kernel SVM about 10%, and
it also exceeds the latent SVM about 6%, showing significant
performance improvement. It should be mentioned that the
image scenes of this dataset are most complex, and the human
regions are of low resolutions with serious occlusions. On this
dataset, even the state-of-the-art method (a deformable model

Image 495-3

Image 498-3

Detection examples from the TUD-Brussels dataset obtained by the PL-SVM and the latent SVM.

with a latent SVM) [2] loses its advantage for the reason that
in such low resolution context, the local details of the objects
are lost and therefore the deformable model cannot work well.
Our method depends on pre-learned piecewise linear models
to capture human objects of multi-views and multi-postures.
It does not need a local deformation operation and is affected
little by low resolution.
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When both BO and HOG features are used, it can be seen
from Figs. 13—15 that even higher performance is obtained,
indicating that BO-HOG features are more effective than HOG
features only for human detection.

It can be seen from Figs. 13-15 that overall PL-SVM
performs better than latent SVM on the TUD Brussels dataset
and the SDL dataset when FPPI is lower than 0.1. This shows
the advantage of PL-SVM when a low false detection rate is
required or when images contain low-resolution human regions
in clutter backgrounds. PL-SVM has lower performance than
latent SVM on the INRIA dataset since most of the human
objects in this dataset are of high resolution, which provides
what latent SVM exactly needs in its part-based detection
strategy. However, in many practical applications, such as
visual surveillance or driving assistant systems where humans
are usually far from the camera, the resolution of captured
human regions is often low. In these practical applications,
our approach is more competitive.

Fig. 16 shows some detection examples, where most of
the humans are correctly located with few false positives.
The human objects are in multi-views with posture variations.
Fig. 16(c) has humans on bicycles and Fig. 16(g) contains
humans of multiple standing postures. Almost all of them
are correctly located, which shows that the proposed PL-
SVM can correctly capture object patterns of large variations
simultaneously with the strategy of piecewise linear SVM
models combined. Fig. 16(c) and (f) each has a missing
positive. The missing positive in Fig. 16(c) is due to too much
occlusion. In our experiments, it is found that when nearly half
of an object is occluded, especially when the head-shoulder
part is occluded, the object may be missed. The missing
positive in Fig. 16(f) is due to the similar colors between the
human and the background. In Figs. 16(h)—(j), there are some
false positives, which contain animal legs, statues, and clothes
in a shop window. These objects with very similar contours
to humans can be falsely detected.

In Fig. 17, we show some detection examples from the
TUD-Brussels dataset. The images are captured from a moving
platform with dynamic backgrounds. The humans of different
views, with low resolution and under clutter backgrounds are
correctly detected in the video images with few missing/false
positives, showing the potential of the proposed approach
in video based applications, such as intelligent surveillance
systems and driving warning systems. The detection results
of the latent SVM are also given in Fig. 17 for comparison.
It can be seen that the state-of-the-art latent SVM cannot find
many humans that can be detected by the PL-SVM.

V. CONCLUSION

Robustness to view and posture variations is very important
in human detection in practical applications, whereas it is still
an open problem. In this paper, we propose a solution to this
problem by developing a novel classification method called
PL-SVM. The PL-SVM consists of multiple linear SVMs and
has the ability to do non-linear classification. In the application
of the PL-SVM to human detection, each linear SVM of the
PL-SVM is responsible for one cluster of humans in a specific

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2013

view or posture. All the linear SVMs combined can well
tackle the multi-view and multi-posture detection problem.
We have proposed a PL-SVM training algorithm that can
automatically divide the feature space and train the PL-SVM
with the margins of the linear SVMs increased iteratively. We
have also presented the BO features as a complement to the
HOG features for human detection.

Extensive experiments have been carried out to examine
the performance of our method. Compared with several recent
SVM methods including the linear SVM, kernel SVM, profile
SVM, and latent SVM, our method reaches the state-of-the-art
in both detection accuracy and its computational efficiency is
even higher. Especially, it performs best when dealing with the
detection of humans of low-resolutions in clutter backgrounds.

Future work includes the extension of this method to
human detection from videos where not only static visual
cues but also other information such as motion [36] or context
information [37] is available.
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