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Abstract—Weakly supervised object detection is a challenging task when provided with image category supervision but required to

learn, at the same time, object locations and object detectors. The inconsistency between the weak supervision and learning objectives

introduces significant randomness to object locations and ambiguity to detectors. In this paper, a min-entropy latent model (MELM) is

proposed for weakly supervised object detection. Min-entropy serves as a model to learn object locations and a metric to measure the

randomness of object localization during learning. It aims to principally reduce the variance of learned instances and alleviate the

ambiguity of detectors. MELM is decomposed into three components including proposal clique partition, object clique discovery, and

object localization. MELM is optimized with a recurrent learning algorithm, which leverages continuation optimization to solve the

challenging non-convexity problem. Experiments demonstrate that MELM significantly improves the performance of weakly supervised

object detection, weakly supervised object localization, and image classification, against the state-of-the-art approaches.

Index Terms—Weakly supervised learning, object detection, min-entropy latent model, recurrent learning
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1 INTRODUCTION

SUPERVISED object detection has made great progress in
recent years [1], [2], [3], [4], [5], [6], as concluded in the

object detection survey [7]. This can be attributed to the
availability of large datasets with precise object annotations
and deep neural networks capable of absorbing the annota-
tion information, especially. Nevertheless, annotating a
bounding-box for each object in large datasets is laborious,
expensive, or even impractical. It is also not consistent with
cognitive learning, which requires solely the presence or
absence of a class of objects in a scene, instead of bounding-
boxes that indicate the precise locations of all objects.

Weakly supervised learning (WSL) refers to methods that
rely on training data with incomplete annotations to learn
recognition models. Weakly supervised object detection
(WSOD) requires solely the image-level annotations indicat-
ing the presence or absence of a class of objects in images to
learn detectors [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29]. It can leverage rich Web images with tags to learn
object-level models.

To tackle the WSOD problem, existing approaches often
resort to latent variable learning or multi-instance learning
(MIL) by using redundant object proposals as inputs. The
learning objective is designed to choose a true instance from
redundant object proposals of each image to minimize the
image classification loss. Due to the unavailability of object-
level annotations, WSOD approaches require to collect
instances from redundant proposals, as well as learning
detectors that compromise the appearance of various
objects. It typically requires solving a non-convex model
and thus is challenged by the local minimum problem.

In the learning procedure of weakly supervised deep
detection networks (WSDDN) [22], a representative WSOD
approach, the problem has been observed, i.e., the collected
instances switch among different object parts with great ran-
domness, Fig. 1. Various object parts were capable of minimiz-
ing image classification loss, but experienced difficulty in
optimizing object detectors due to their appearance ambiguity.
Recent approaches have used image segmentation [28], [30],
context information [24], and instance classifier refinement [27]
to empirically regularize the learning procedure. However, the
issues about principally reducing localization randomness and
alleviating the localminimum remain unresolved.

In this paper, we propose a clique-based min-entropy
latent model (MELM)1 to collect instances with minimum
randomness, motivated by a classical thermodynamic prin-
ciple: Minimizing entropy results in minimum randomness of a
system. Min-entropy is used as a model to learn object
locations and a metric to measure the randomness of locali-
zation during learning. MELM is concluded as three compo-
nents: (1) Instance (object and object part) collection with a
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clique partition module; (2) Object clique discovery with a
global min-entropy model; (3) Object localization with a
local min-entropy model, Fig. 2. A clique is defined as a set
of object proposals which are spatially related (i.e., overlap-
ping with each other) and class related (i.e., having similar
object class scores), Fig. 3. The introduction of proposal cli-
ques can facilitate reducing the redundancy of region pro-
posals and optimizing min-entropy models.

With the clique partition module and min-entropy mod-
els, we can collect instances with minimum randomness,
activate true object extent, and suppress object parts, Fig. 1.
MELM is deployed as a clique partition module and net-
work branches concerning object clique discovery and
object localization on top of a deep convolutional neural net-
work (CNN). Based on the global and local min-entropy
models, we adopt a recurrent strategy to train detectors and
pursue true object extent using solely image-level supervi-
sion. This is based on the priori that in deep networks the
image classification task and object detection task are highly
correlated, which allows MELM to recurrently transfer the
weak supervision, i.e., image category annotations, to object
locations. By accumulating multiple iterations, MELM dis-
covers multiple objects, if such exist, from a single image.

MELM is first proposed in our CVPR paper [31] and is
promoted both theoretically and experimentally in this

full version. The contributions of this paper include: (1) A
min-entropy latent model that is integrated with deep
networks to effectively collect instances and principally
minimize the localization randomness during weakly
supervised learning. (2) A clique partition module that
facilitates instance collection, object extent activation, and
object part suppression. (3) A recurrent learning algo-
rithm that formulates image classification and object
detection as a predictor and a corrector, respectively, and
leverages continuation optimization to solve the challeng-
ing non-convexity problem. (4) State-of-the-art perfor-
mance of weakly supervised detection, localization, and
image classification.

The remainder of this paper can be concluded as follows.
Related works are described in Section 2 and the proposed
method is presented in Section 3. Experimental results are
given in Section 4. We conclude this paper in Section 5.

2 RELATED WORK

WSOD was often solved with a pipelined approach, i.e., an
image was first decomposed into object proposals, with
which clustering [14], [15], [16], latent variable learning [12],
[13], [14], [15], [17] or multiple instance learning [8], [10],
[11], [21], [32] was used to perform proposal selection and
classifier estimation. With the rise of deep learning, pipe-
lined approaches have been evolving into multiple instance
learning (MIL) networks [22], [23], [24], [25], [27], [28], [29],
[33], [34], [35], [36], [37], [38].

Fig. 1. Evolution of object locations during learning. Blue boxes denote
proposals of high object probability and white ones detected objects. It
can be seen that our approach reduces localization randomness and
learns object extent. (Best viewed in color.)

Fig. 2. Illustration of the min-entropy latent model (MELM). A clique partition module is proposed to collect objects/parts from redundant proposals;
Based on the cliques, a global min-entropy model is defined for object clique discovery; Within discovered cliques, a local min-entropy model is pro-
posed to suppress object parts and select true objects. The three components are iteratively performed.

Fig. 3. The proposals of high scores are selected and dynamically parti-
tioned into same cliques if they are spatially related (i.e., overlapping
with each other) and class related (i.e., having similar object class
scores). Clique partition targets at collecting object/object parts and acti-
vating true object extent.
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Clustering. Various clustering methods were based on a
hypothesis that a class of object instances shape a single
compact cluster while the negative instances form multiple
diffuse clusters. With such a hypothesis, Wang et al. [15],
[16] calculated clusters of object proposals using probabilis-
tic latent Semantic Analysis (pLSA) on positive samples,
and employed a voting strategy on these clusters to deter-
mine positive sub-categories. Bilen and Song [13], [14] lever-
aged clustering to initialize latent variables, i.e., object
regions, part configurations and sub-categories, and learn
object detectors based on the initialization. Clustering is a
simple but effective method. The disadvantage lies in that a
true positive cluster could incorporate significant noise if
the objects are surrounded by clutter backgrounds.

Latent Variable Learning. Latent SVM [26] learned object
locations and detectors using an Expectation-Maximization-
like algorithm. Probabilistic Latent Semantic Analysis [15],
[16] learned object locations in a latent space.

Various latent variable methods were required to solve
the non-convexity problem. They often got stuck in a poor
local minimum during learning, e.g., falsely localizing
object parts or backgrounds. To pursue a stronger mini-
mum, object symmetry and class mutual exclusion informa-
tion [12], Nesterov’s smoothing [17], and convex clustering
[14] were introduced to the optimization function. These
approaches can be regarded as regularization which enfor-
ces the appearance similarity among objects.

Multiple Instance Learning (MIL). A major approach for
tackling WSOD is to formulate it as an MIL problem [8],
which treats each training image as a “bag” and iteratively
selects high-scored instances from each bag when learning
detectors. However, MIL remains puzzled by random poor
solutions. The multi-fold MIL [10], [11] used division of a
training set and cross validation to reduce the randomness
and thereby prevented training from prematurely locking
onto erroneous solutions. Hoffman et al. [21] trained detec-
tors with weak annotations while transferring representa-
tions from extra object classes using full supervision
(bounding-box annotation) and joint optimization. To reduce
the randomness of positive instances, bag splitting was used
during the optimization procedure ofMILinear [25].

MIL has been updated to MIL networks [22], [27], where
the convolutional filters behave as detectors to activate
regions of interest on the deep feature maps [39], [40], [41].
The beam search [42] was used to localize objects by
leveraging spatial distributions and informative patterns
captured in the convolutional layers. To alleviate the non-
convexity problem, Li et al. [23] adopted progressive opti-
mization as regularized loss functions. Tang et al. [27] pro-
posed to refine instance classifiers online by propagating
instance labels to spatially overlapped instances. Diba et al.
[28] proposed weakly supervised cascaded convolutional
networks (WCCN). It learned to produce a class activation
map and then selected the best object locations on the map
by minimizing the segmentation loss.

MIL networks [27], [28], [29] report state-of-the-art per-
formance, but are misled by the inconsistency between
data annotations and learning objectives. With image-level
annotations, they are capable of learning effective repre-
sentations for image classification. Without object-level
annotation, however, their localization ability is limited.

The convolutional filters learned with image-level supervi-
sion incorporate redundant patterns, e.g., object parts and
backgrounds, which cause localization randomness and
model ambiguity.

Recent methods leveraged online instance classifier
refinement (OICR) [27], [43] and proposal clusters [29], [43]
to improve localization. The iterative generation of the pro-
posal clusters [43] with OICR prevented the network from
concentrating on parts of objects. In this paper, we propose
to solve the localization randomness problem by introduc-
ing proposal cliques and min-entropy latent models. Our
defined proposal cliques facilitate reducing the redundancy
of proposals and optimizing min-entropy models. Using the
clique-based min-entropy models, we can learn instances
with minimum randomness, activate object extent, and sup-
press object parts, Fig. 1.

To translate the image labels to object locations, the MIL
network approaches [27], [43] defined multiple network
branches: the first one for the basic MIL network and the
others for instance classifier refinement. We inherit the
multi-branch architecture but add recurrent learning to
facilitate the object score feedback [44]. With recurrent
learning, the network branches can directly benefit from
each other.

3 METHODOLOGY

3.1 Overview

In weakly supervised learning, the inconsistency between
the supervision (image-level annotation) and the objective
(object-level classifier) introduces significant randomness to
object localization and ambiguity to detectors. We aim at
reducing this randomness to facilitate the collection of
instances. To this end, we analyze two factors that cause
such randomness: proposal redundancy and location uncer-
tainty. 1) It is known that the objective functions of WSOD
models are typically non-convex [8] and have many local
minima. The redundant proposals deteriorate them by
introducing more local minima and larger searching space.
2) As the object locations are uncertain, the learned instan-
ces may switch among object parts, i.e., local minima.

To reduce the proposal redundancy, we first partition the
redundant object proposals into cliques and collect instan-
ces which are spatially related (i.e., overlapping with each
other) and class related (i.e., having similar object class
scores). To minimize localization randomness, we design a
global min-entropy model that reflects class and spatial dis-
tributions of object cliques. By optimizing the global min-
entropy model, discriminative cliques containing objects
and object parts are discovered, Fig. 2, and the cliques
which lack discriminative information are suppressed. The
discovered cliques are used to activate true object extent.

To localize objects in the discovered cliques, a local min-
entropy latent model is defined. By optimizing the local
min-entropy model pseudo-objects are estimated and their
spatial neighbors are estimated as hard negatives. Such
pseudo-objects and hard negatives estimated under the
min-entropy principle have minimized randomness during
learning, and further improve the performance of object
localization, Fig. 2. MELM is deployed as a clique partition
module and two network branches concerning object clique
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discovery and object localization, Fig. 4. During learning, it
leverages a clique partition module to smooth the objective
function and a continuation optimization method to solve
the challenging non-convexity problem.

3.2 Min-Entropy Latent Model

Let x 2 X denote an image and y 2 Y denote labels indicat-
ing if x contains an object or not, where Y ¼ f1; 0g. y ¼ 1
indicates that there is at least one object of positive class in
the image (positive image) while y ¼ 0 indicates an image
without the object of positive class (negative image). h
denoting an object proposal (location) is a latent variable
and H denoting object proposals in an image is the solution
space. Hc denoting proposal clique is a subset of H. u

denotes the network parameters. The min-entropy latent
model (MELM) with object locations h� and network
parameters u� to be learned, is defined as

h�; u�f g ¼ argmin
h;u

E X ;Yð Þ h; uð Þ

¼ argmin
h;u

E X ;Yð Þ Hc; uð Þ þ �E X ;Y;Hcð Þ h; uð Þ

, argmin
h;u

L X ;Yð Þ Hc; uð Þ þ �L X ;Y;Hcð Þ h; uð Þ; (1)

where E X ;Yð Þ Hc; uð Þ and E X ;Y;Hcð Þ h; uð Þ are the global and
local entropy models which respectively serve for object cli-
que discovery and object localization, Fig. 4. � is a regulari-
zation weight. L X ;Yð Þ Hc; uð Þ and L X ;Y;Hcð Þ h; uð Þ are loss
functions based on E X ;Yð Þ Hc; uð Þ and E X ;Y;Hcð Þ h; uð Þ,
respectively.

Given image-level annotations, i.e., the presence or
absence of a class of objects in images, the learning objective
of MELM is to find a solution that disentangles object
instances from noisy object proposals with minimum image
classification loss and localization randomness. To this
end, MELM is decomposed into three components includ-
ing clique partition, object clique discovery, and object
localization.

3.2.1 Clique Partition

Noting that the localization randomness usually occurs
among high-scored proposals, we empirically select a set of
high-scored (top-200) proposals ~H to construct the cliques,
where ~H � H.

The proposal cliques are the minimum sufficient cover to
~Hwhich satisfy the following formulations, as

S C
c¼1Hc ¼ ~H

8c 6¼ c0; Hc [Hc0 ¼ ;;
�

(2)

where c; c0 2 f1; . . . ; Cg and C is the number of proposal cli-
ques. To partition cliques, the proposals are sorted by their
object scores and the following two steps are iteratively per-
formed: 1) Construct a clique using the proposal of highest
object score but not belonging to any clique. 2) Find the pro-
posals that overlap with any proposal in the clique larger
than a threshold t and merge them into the clique.

3.2.2 Object Clique Discovery with Global Min-Entropy

During the learning procedure, it is required that the cliques
evolve with minimum randomness. At the same time, it
is required to discover discriminative cliques containing
objects and object parts. The network parameters fine-tuned
with such cliques can activate true object extent. To this
end, a global min-entropy model is defined as

H�c ¼ argmin
Hc

E X ;Yð Þ Hc; uð Þ

¼ argmin
Hc

�log
X
c

p y;Hc; uð Þ; (3)

where p y;Hc; uð Þ is the class probability of a clique Hc

defined on the object score s y; h; uð Þ, as

p y;Hc; uð Þ¼
exp 1= Hcj j

P
h2Hc

s y; h; uð Þ
� �

P
c

P
y exp 1= Hcj j

P
h2Hc

s y; h; uð Þ
� � ; (4)

Fig. 4. MELM is deployed as a clique partition module and two network branches for object clique discovery and object localization. These two net-
work branches are unified with feature learning and optimized with a recurrent learning algorithm. “M1”, “M2” and “M3” are heatmaps about proposal
scores without min-entropy, with global min-entropy, and with local min-entropy, respectively.N is the number of object categories.
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where �j j calculates proposal number in a clique. s �ð Þ
denotes the last FC layer in the object clique discovery
branch that outputs object scores for proposals.

To ensure that the discovered cliques can best discrimi-
nate the positive images from negative ones, we further
introduce a classification-related weight wHc . Based on the
prior that the object class probabilities of proposals are cor-
related with their image class probabilities, the global min-
entropy is then defined as

E X ;Yð Þ Hc; uð Þ ¼ �log
X
c

wHcp y;Hc; uð Þ; (5)

where wHc , defined as

wHc ¼
p y;Hc; uð ÞP
y p y;Hc; uð Þ ; (6)

is the classification-related weight of clique Hc. Eq. (5)
belongs to the Acz�el and Dar�oczy (AD) entropy [45], [46]
family and is derivable. Eq. (6) shows that when y ¼ 1,
wHc 2 0; 1½ � is positively correlated to object score of the pos-
itive class in a clique, but negatively correlated to scores of
all other classes.

With above definitions, we implement an object clique
discovery branch on top of the network, Fig. 4, and define a
loss function to learn network parameters, as

L X ;Yð Þ Hc; uð Þ ¼ yE X ;Yð Þ Hc; uð Þ
� 1� yð ÞPh log 1� p y; h; uð Þð Þ: (7)

For positive images, y ¼ 1, the second term is zero and only
the global min-entropy term is optimized. For negative
images, y ¼ 0, the first term is zero and the second term
(image classification loss) is optimized.

3.2.3 Object Localization with Local Min-Entropy

The cliques discovered by the global min-entropy model
constitute good initialization for object localization, but
nonetheless incorporate random false positives, e.g., object
parts and/or partial objects with backgrounds. This is
caused by the learning objective of object clique discovery,
which selects proposals to discriminate positive images
from negative ones but does not consider how to precisely
localize objects.

A local min-entropy latent model is then defined to local-
ize objects based on the discovered cliques, as

h� ¼ argmin
h2H�c

E X ;Y;H�cð Þ h; uð Þ; (8)

where

E X ;Y;Hcð Þ h; uð Þ ¼ �
X
h2Vh�

whp y; h; uð Þlog p y; h; uð Þ; (9)

also belongs to the AD entropy [45], [46] family and is also
derivable. Different from Eq. (5) which considers the sum of
the proposal probabilities globally to predict the image
labels, Eq. (9) is designed to locally discriminate each pro-
posal to be positive or negative. wh is defined as

wh ¼
P

h2Vh�
g h; h�ð Þp y; h; uð Þ

p y; h; uð ÞPh2Vh� g h; h�ð Þ ; (10)

where Vh� denotes neighborhoods of h� in the clique.
g h; h�ð Þ ¼ e�a 1�O h;h�ð Þð Þ2 is a Gaussian kernel function with
parameter a. O h; h�ð Þ is the IoU of two proposals. The
Gaussian kernel function returns a high value when
O h; h�ð Þ is large, and a low value when O h; h�ð Þ is small.
With Eq. (10), we define a “soft” proposal labeling strategy
for object localization, which is validated to be less sensitive
to noises [47] compared to the hard thresholding approach
defined in [31].

Accordingly, the loss function of the object localization
branch is defined as

L X ;Y;Hcð Þ h; uð Þ ¼ E X ;Y;H�cð Þ h; uð Þ: (11)

According to the definition of wh, the proposals close to h�

tend to be true objects, and those far from h�, i.e.,
Oðh;h�Þ < 0:5, are hard negatives. Optimizing the loss
function produces sparse object proposals of high object
probability pðy; h; uÞ and suppresses object parts in clique
H�c . During the learning procedure, the localization capabil-
ity of detectors is progressively improved.

Algorithm 1. Recurrent Learning

Input: Image x 2 X , image label y 2 Y, and object proposals
h 2 H

Output:Network parameters u
1 Initialize object score s hð Þ ¼ sðy; h; uÞ ¼ 1 for all h
2 for i = 1 toMaxIter do
3 fh  Compute deep features for all h through forward

score
4 fh  fh � sðhÞ Aggregate features by object score
5 Clique partition:
6 Hc  Clique partition using Eq. (2)
7 Object clique discovery:
8 H�c  Optimize E X ;Yð Þ Hc; uð Þ using Eq. (5)
9 L X ;Yð Þ Hc; uð Þ  Compute using Eq. (7)
10 Object localization:
11 h�  Optimize E X ;Y;H�cð Þ h; uð Þ using Eq. (8)
12 L X ;Y;Hcð Þ h; uð Þ  Compute using Eq. (11)
13 Network parameter update:
14 u Back-propagate by miniminzing Eqs. (7) and

(11)
15 sðhÞ  Update object score using parameters u
16 end for

3.3 Model Implementation

MELM is implemented with an integrated deep network,
with a clique partition module and two network branches
added on top of the FC layers, Fig. 4. The first network
branch, designated as the object clique discovery branch, has a
global min-entropy layer, which defines the distribution of
object probability and targets at finding candidate object cli-
ques by optimizing the global entropy and the image classi-
fication loss. The second branch, designated as the object
localization branch, has a local min-entropy layer and a soft-
max layer. The local min-entropy layer classifies the object
candidates in a clique into pseudo objects2 and hard nega-
tives by optimizing the local entropy and pseudo object
detection loss.

2. Pseudo objects are the instantaneously learned objects.
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In the learning phase, object proposals are first generated
for each image. An ROI-pooling layer atop the convolu-
tional layer (CONV5) is used for efficient feature extraction
for these proposals. The MELMs are optimized with a recur-
rently learning algorithm, which uses forward propagation
to select sparse proposals as object instances, and back-
propagation to optimize the network parameters with the
gradient defined in Appendix. The object probability of
each proposal is recurrently aggregated by multiplying by
the object probability learned in the preceding iteration. In
the detection phase, the learned object detectors, i.e., the
parameters for the soft-max and FC layers, are used to clas-
sify proposals and localize objects.

3.4 Model Learning

The objective of model learning is transferring the image
category supervision to object locations with min-entropy
constraints, i.e., minimum localization randomness.

Recurrent Learning. A recurrent learning algorithm is
implemented to transfer the image-level (weak) supervision
using an integrated forward- and back-propagation proce-
dure, Fig. 5a. In a feed-forward procedure, the min-entropy
latent models discover object cliques and localize objects
which are used as pseudo-objects for detector learning.
With the learned detectors the object localization branch
assigns all proposals new object probability, which is used

to aggregate the object scores with an element-wise multiply
operation in the next learning iteration. In the back-propa-
gation procedure, the object clique discovery and object
localization branches are jointly optimized with an SGD
algorithm, which propagates gradients generated with
image classification loss and pseudo-object detection loss.
With forward- and back-propagation procedures, the net-
work parameters are updated and the image classifiers and
object detectors are mutually enforced. The recurrent learn-
ing algorithm is described in Algorithm 1.

Accumulated Recurrent Learning. Fig. 5b shows the pro-
posed accumulated recurrent learning (ARL). In ARL, we
add multiple object localization branches, which may local-
ize objects different from those discovered by previous
branches. We thus accumulates objects from all previous
branches. Doing so not only endows this approach the capa-
bility to localize multiple objects in a single image but also
improves the robustness about object appearance diversity
by learning various objects with multiple detectors.

3.5 Model Analysis

With the clique partition module and recurrent learning,
MELM implements the idea of continuation optimization
[48] to alleviate the non-convexity problem.

In continuation optimization, a complex non-convex
objective function is denoted as EðuÞ, where u denotes the
model parameters. Optimizing EðuÞ is to find the solution

u� ¼ argmin
u

EðuÞ: (12)

While directly optimizing Eq. (12) causes local minimum
solutions, a smoothed function Eðu; �Þ is introduced to
approximate EðuÞ and facilitate the optimization, as

Eðu; �Þ ¼ EðuÞ � �EðuÞ; (13)

where � 2 ½0; 1� controls the smoothness of the approximate
function Eðu; �Þ and EðuÞ is a correction function. The tradi-
tional continuation method traces an implicitly defined
curve from a starting point ðu0; 1Þ to a solution point ðu�; 0Þ,
where u0 is the solution of Eðu; �Þ when � ¼ 1. During the
procedure, if Eðu; �Þ is smooth and its solution is close to
EðuÞ, we need only to fill the gap between them. This is
done by defining a consequence of predictions and correc-
tions to iteratively approximate the original objective func-
tion and approach the globally optimal solution u�.

The objective function of MELM, defined in Eq. (1), is to
find the solution fh�; u�g,

fh�; u�g ¼ argmin
h;u

EðX ;YÞðh; uÞ: (14)

For the complexity and non-convexity of EðX ;YÞðh; uÞ, we
propose to optimize an approximate function,

EðX ;YÞðHc; uÞ ¼ EðX ;YÞðh; uÞ � �EðX ;Y;HcÞðh; uÞ; (15)

which corresponds to Eq. (1). EðX ;YÞðHc; uÞ is defined by the
clique partition module and is smoother than EðX ;YÞðh; uÞ.
This is achieved by reducing the solution space from thou-
sands of proposals to tens of cliques in each image and aver-
aging the class probability of all proposals in each clique, as
defined by Eq. (4).

Fig. 5. Flowchart of (a) the recurrent learning algorithm and (b) unfolded
accumulated recurrent learning algorithm. The solid lines denote network
connections and dotted lines denote forward-only connections.
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With the approximate function defined, we explore
recurrent predictions and corrections to optimize the model.
The gap between EðX ;YÞðHc; uÞ and EðX ;YÞðh; uÞ is that the for-
mer is defined to discover object cliques but the latter to
localize objects. As the solution of EðX ;YÞðh; uÞ (object) is
included in the solution of EðX ;YÞðHc; uÞ (clique), the gap
can be simply filled by designing a correction model
EðX ;Y;HcÞðh; uÞ to localize the object in the clique. With recur-
rent learning, the original objective function is thus progres-
sively approximated.

Accordingly, the weakly supervised learning problem is
decomposed into an object clique discovery problem (pre-
diction) and object localization problem (correction). The
non-convex optimization problem is turned into a proxi-
mate problem, which is easier to be optimized [49], [50].

3.6 Object Detection

By optimizing the min-entropy latent models, we obtain
object detectors, which are applied to detect objects from
test images. The detection procedure involves feature
extraction and object localization Fig. 4. With redundant
object proposals extracted by the Selective Search [51] or the
EdgeBox method [52], a test image is fed to the feature
extraction module, and then a ROI-pooling layer is used to
extract features for each proposal. The detector outputs
object scores for each proposal and a Non-Maximum Sup-
pression (NMS) procedure is used to remove the over-
lapped proposals.

4 EXPERIMENTS

The PASCALVOC 2007, 2010, 2012 datasets [53], the ILSVRC
2013 dataset [54], and the MSCOCO 2014 dataset [55] are
used to evaluate the proposed approach. In what follows,
the datasets and experimental settings are first described.
The evaluation of the model and comparison with the state-
of-the-art approaches are then presented.

4.1 Experimental Settings

Datasets. The VOC datasets have 20 object categories. The
VOC 2007 datasets contains 9963 images which are divided
into three subsets: 5011 for train and val, and 4952 for test.
The VOC 2010 dataset contains 19740 images of which
10103 for train and val, and 9637 for test. The VOC 2012

dataset contains 22531 images which are divided into three
subsets: 11540 for train and val, and 10991 for test. The
ILSVRC 2013 detection dataset is more challenging for object
detection as it has 200 object categories, containing 464278
images where 424126 image for train and val, and 40152
images for test. For comparison with the previous works, we
split the val set of ILSVRC 2013 detection dataset into val1 and
val2 as in [1], which was used for training and test, respec-
tively. Although it has more training images, the number of
images for each object category is much less than that in the
VOC datasets. The MSCOCO 2014 dataset contains 80 object
categories, with challenging aspects including multiple
objects, multiple classes, and small objects. On the PASCAL
VOC and ILSVRC 2013 datasets the mean average precision
(mAP) is used for evaluation. On the MSCOCO 2014 dataset
themAP undermultiple IoUs is used.

CNN Models. MELM is implemented with two popular
CNN models pre-trained on the ImageNet ILSVRC 2012
dataset. The first CNN model VGG-CNN-F (VGGF for
short) [56] has a similar architechture as the AlexNet [57]
which has 5 convolutional layers and 3 fully connected
layers. The second CNN model is VGG16 [58], which has 13
convolutional layers and 3 fully connected layers. For these
two CNN models, we replaced the spatial pooling layer
after the last convolution layer with the ROI-pooling layer
as [2]. The FC8 layer in the two CNN models was removed
and the MELMmodel was added.

Object Proposals. The Selective Search [51] or EdgeBoxes
method [52] was used to extract about 2000 object proposals
for each image. As the conventional object detection task,
we used the fast setting when generating proposals by
Selective Search. We also removed the proposals whose
width or height are less than 20 pixels.

Learning settings. Following [22], [24], [27], [28], the input
images were re-sized into 5 scales {480, 576, 688, 864, 1200}
with respect to the larger side, height or width. The scale of
a training image was randomly selected and each image
was randomly flipped. In this way, each test image was
augmented into 10 images. For recurrent learning, we
employed the SGD algorithm with momentum 0.9, weight
decay 5e-4, and batch size 1. The model iterated 20 epochs
where the learning rate was 5e-3 for the first 15 epochs and
5e-4 for the last 5 epochs. The output scores of each proposal
from the 10 augmented images were averaged.

Fig. 6. Visualization of the clique partition, object clique discovery, and object localization results. (a) Bounding boxes of different colors denote
proposals from different cliques. (b) Score maps of cliques and objects. (Best viewed in color).
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4.2 Model Effect and Analysis

4.2.1 Clique Affect

Fig. 6 shows that in discovered cliques discriminative
objects and object parts were collected and the proposals
which lack discriminative information were suppressed.
With the proposals about objects and object parts, the global
min-entropy model could activate object extent during the
back-propagation procedure. It can also be seen that the
true object in a clique can be precisely localized after the
recurrent learning procedure.

Fig. 7 shows the object cliques from different learning
epochs. It can be seen that in the early training stage (Epoch
2), the object clique collected the object extent, i.e., object
and object parts. This ensured the object extent activation
by the object clique discovery branch. The object localization
branch further suppressed the object parts in the object cli-
que (Epoch 4). MELM finally activated the true object
extent, suppressed the object part and detected objects accu-
rately (Epoch 20).

4.2.2 Randomness Analysis

Fig. 8a shows the evolution of global and local entropy, sug-
gesting that our approach optimizes the min-entropy objec-
tive during learning. Fig. 8b provides the gradient evolution
of the FC layers. In the early learning epochs, the gradient
of the global min-entropy module was slightly larger than
that of the local min-entropy module, suggesting that the
network focused on optimizing the image classifiers. As
learning proceeded, the gradient of the global min-entropy
module decreased such that the local min-entropy module
dominated the training of the network, indicating that the
object detectors were being optimized.

To evaluate the effect of min-entropy, the randomness of
object locations was evaluated with localization accuracy
and localization variance. Localization accuracy was calcu-
lated by weighted averaging the overlaps between the
ground-truth object boxes and the learned object boxes, by
using pðy; h; uÞ as the weight. Localization variance was
defined as the weighted variance of the overlaps by using

pðy; h; uÞ as the weight. Figs. 8c and 8d show that the pro-
posed MELM had significantly greater localization accuracy
and lower localization variance than WSDDN. This strongly
indicates that our approach effectively reduces localization
randomness during weakly supervised learning.

Such an effect was further illustrated in Fig. 9, where
we compared WSDDN with MELM by the localization
accuracy and localization variance during the learning. As
shown in Fig. 9, MELM significantly reduced the local-
ization randomness and achieved higher localization accu-
racy than WSDDN. Take the “bicycle” in Fig. 9 for example.
In the early training epochs, both WSDDN and MELM
failed to localize the objects. In the following training
epochs MELM reduced the randomness and achieved high
localization accuracy. In contrast, WSDDN switched among
object parts and failed to localize the true objects.

4.2.3 Ablation Experiments

Baseline. The baseline approach was derived by simplifying
Eq. (7) to solely model the global entropy EðX ;YÞðHc; uÞ. This
is similar to WSDDN without the spatial regulariser [22]
where the single learning objective is to minimize the image
classification loss. This baseline, referred to as “MELM-
base” in Table 1, achieved 31.5 percent mAP using the
VGGF network.

Clique Effect. By dividing the object proposals into cli-
ques, the “MELM-base” approach was promoted to
“MELM-base+Clique”. Table 1 shows that the introduction
of proposal cliques improved the detection performance by
2.4 percent (from 31.5 to 33.9 percent). That occurred
because using partitioned cliques reduced the solution
space of the latent variable learning, thus readily reducing
the redundancy of object proposals and facilitating a better
solution. We also conducted experiments with different t

values, which controls the clique size as defined in Section
3.2.1, and summarized the results in Table 2. Accordingly,
we empirically set t to be 0.7 in other experiments.

Min-Entropy Models. We denoted the min-entropy mod-
els by “MELM-D” and “MELM-L” in Table 1, which

Fig. 7. Evolution of cliques. (Best viewed in color).

Fig. 8. Gradient, entropy, and localization on the PASCAL VOC 2007
trainval set. (a) The evolution of entropy. (b) The evolution of gradient.
(c) Localization accuracy. (d) Localization variance.
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respectively corresponded to object clique discovery and
object localization. We trained the models by simply cascad-
ing the object clique discovery and object localization
branches, without using the recurrent learning. Table 1
shows that with VGGF we achieved 33.6 and 36.0 percent
mAP for object clique discovery and object localization
branches, which improved the baseline “MELM-base” by
2.1 and 5.5 percent. For VGG16, “MELM-L” significantly
improved the “MELM-base+Clique” from 29.5 to 40.1 per-
cent, with a 10.6 percent margin at most. This fully demon-
strated that the min-entropy models and their
implementation with object clique discovery and object
localization branches were pillars of our approach.

Recurrent Learning. In Table 1, the recurrent learning
algorithms “MELM-D+RL” and “MELM-L+RL”, respectively

achieved 34.5 and 42.6 percent mAP, improving the “MELM-
L” (without recurrent learning) by 0.5 and 2.4 percent. When
using VGG16, “MELM-D+RL” and “MELM-L+RL” respec-
tively achieved 34.5 and 42.6 percent mAP, improving the
“MELM-L” by 1.9 and 2.5 percent. These improvements
showed that with recurrent learning, Fig. 4, the object clique
discovery and object localization branches benefited from
each other and thusweremutually enforced.

Accumulated Recurrent Learning. The models with accumu-
lated recurrent learning were denoted by “MELM-D+ARL”,
“MELM-L1+ARL”, and “MELM-L2+ARL” in Table 1. In the
learning procedure, the high scored proposals were accumu-
lated into the next branch.When using two object localization
branches, “MELM-L2-ARL” significantly improved the mAP
of “MELM-L-RL” from 42.6 to 46.4 percent (+3.8 percent).
It further improved the mAP from 46.4 to 47.3 percent
(+0.9 percent) when using three branches, but did not signifi-
cantly improvewhen using four.

4.3 Performance and Comparison

4.3.1 PASCAL VOC Datasets

Weakly Supervised Object Detection. Table 3 compared the
detection performance of MELM with the state-of-the-art
approaches on the PASCAL VOC 2007 dataset. It can be seen
that MELM respectively achieved 38.4 and 47.3 percent with
the VGGF and VGG16 models. With the popular VGG16
model, MELM respectively outperformed the OICR [27],

TABLE 1
Detection Mean Average Precision (%) on the PASCAL

VOC 2007 Test Set

CNN Method mAP

VGGF

MELM-base 31.5
MELM-base+Clique 33.9

MELM-D 33.6
MELM-L 36.0

MELM-D+RL 34.1
MELM-L+RL 38.4

VGG16

MELM-base+Clique 29.5
MELM-D 32.6
MELM-L 40.1

MELM-D+RL 34.5
MELM-L+RL 42.6
MELM-D+ARL 37.4
MELM-L1+ARL 46.4
MELM-L2+ARL 47.3

Ablation experimental results of MELM.

TABLE 2
Detection Mean Average Precision (%) on the PASCAL

VOC 2007 val Set

t 0.1 0.3 0.5 0.7 0.9 1
mAP 32.6 34.3 34.4 35.3 33.5 34.4

Performance with Different Clique Sizes (Controlled by t) of MELM.

Fig. 9. Comparison of the learned object locations by WSDDN [22] and MELM. The yellow boxes in the first column denote ground-truth objects. The
white boxes denote the learned object locations and the blue boxes denote the high-scored proposals. It can be seen that for WSDDN the learned
object locations evolved with large randomness, i.e., switch among the proposals around the objects. In contrast the object locations learned by
MELM are consistent and have small randomness, which is quantified by the localization variance curves in the last column. (Best viewed in color).
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Self-Taught [29], WCCN [28], WeakRPN [60], and TS2C [59]
by 6.1 percent (47.3 versus 41.2 percent), 5.6 percent (47.3 ver-
sus 41.7 percent), 4.5 percent (47.3 versus 42.8 percent),
3.0 percent (47.3 versus 44.3 percent) and 2.0 percent (47.3
versus 45.3 percent), whichwere significantmargins in terms
of the challenging WSOD task. MELM using multiple net-
works (MELM-Ens.) outperformed OICR-Ens. (47.8 percent
mAP versus 42.0 percent mAP). To further improve the
detection performance, we re-trained a Fast-RCNN detector
using learned pseudo objects and a ResNet-101 network, and
achieved 49.0 percentmAP.

Table 5 compared the detection performance of MELM
with the state-of the-art approaches on the VOC 2010 and
VOC 2012 datasets. It can be seen that MELM usually out-
performed the state-of-the-art approaches. On the VOC 2010
dataset, MELM with VGGF significantly outperformed
WCCN [28] by 7.5 percent (36.3 versus 28.8 percent) with a
VGGFmodel, andwas comparable to it with a VGG16model.
On the VOC2012 dataset, with a VGGFmodel, MELM respec-
tively outperformedWCCN [28] andOICR [27] by 8.0 percent
(36.4 versus 28.4 percent) and 1.8 percent (36.4 versus
34.6 percent). With a VGG16 model, MELM respectively out-
performedWCCN [28], Self-Taught [29], OICR [27], and TS2C
[59] by 4.5 percent (42.4 versus 37.9 percent), 4.1 percent (42.4
versus 38.3 percent), 4.5 percent (42.4 versus 37.9 percent) and
2.4 percent (42.4 versus 40.0 percent).

Specifically, the detection performance for “bicycle” (+4.5
percent), “cow” (+8.5 percent), “dining-table” (+14.7 percent),
“dog” (+9.6 percent) significantly improved, which shows the
general effectiveness ofMELM

Despite of the average good performance, our approach
failed on the “person” class, as shown in the last image of
Fig. 10a. “Person” is one of the most challenging class as
people often involve great appearance variance from
clothes, poses, and occlusions. Furthermore, the definition

for ??person?? is not consistent. A “person” could be
defined as a pedestrian, a head-and-shoulder, or just a
human face. Given such ambiguous definition, what the
algorithm can do is to localize the most discriminative part
of a “person”, e.g., the face. We also note that although the
performance of “person” decreased, the average perfor-
mance for all class significantly increased.

For the object classes with large appearance variance, we
observed that the algorithm correctly classified the object
regions but often failed to precisely localize them, i.e., the IoU
between the learned bounding boxes and the groundtruth
is smaller than 0.5. When using the “pointing localization”
metric [37], the “person” class achieved 97.1 percent localiza-
tion accuracy, which shows potential to practical applications.

Fig. 10 shows some of the detection examples. It can be
seen that MELM precisely localize objects from clutter back-
ground and correctly localized multiple object regions in a
single image.

Weakly Supervised Object Localization. The Correct Locali-
zation (CorLoc) metric [18] was employed to evaluate the
localization accuracy. CorLoc is the percentage of images for
which the region of highest object score has at least 0.5 inter-
action-over-union (IoU) with the ground-truth object region.
This experiment was done on the trainval set because the
region selection exclusively worked in the training process.

It can be seen in Table 4 that with VGGF model, the mean
CorLoc of MELM respectively outperformed the state-
of-the-art WSDDN [22] and WCCN [28] by 4.2 percent (58.4
versus 54.2 percent) and 5.8 percent (58.4 versus 52.6 percent).
With the VGG16 model, it respectively outperformed the
state-of-the-art WSDDN [22] and WCCN [28] by 7.9 percent
(61.4 versus 53.5 percent) and 4.7 percent (61.4 versus 56.7
percent). Noticeably, on the “bus”, “car”, “chair”, and “table”
classes, MELM outperformed the compared state-of-the-art
methods up to 7�15 percent. This shows that the clique-based

TABLE 3
Detection Mean Average Precision (%) on the PASCALVOC 2007 Test Set

CNN Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

VGGF/

AlexNet

MILinear [25] 41.3 39.7 22.1 9.5 3.9 41.0 45.0 19.1 1.0 34.0 16.0 21.3 32.5 43.4 21.9 19.7 21.5 22.3 36.0 18.0 25.4

Multi-fold MIL [11] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

PDA [23] 49.7 33.6 30.8 19.9 13.0 40.5 54.3 37.4 14.8 39.8 9.4 28.8 38.1 49.8 14.5 24.0 27.1 12.1 42.3 39.7 31.0

LCL+Context [16] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

WSDDN [22] 42.9 56.0 32.0 17.6 10.2 61.8 50.2 29.0 3.8 36.2 18.5 31.1 45.8 54.5 10.2 15.4 36.3 45.2 50.1 43.8 34.5

ContextNet [24] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

WCCN [28] 43.9 57.6 34.9 21.3 14.7 64.7 52.8 34.2 6.5 41.2 20.5 33.8 47.6 56.8 12.7 18.8 39.6 46.9 52.9 45.1 37.3

OICR [27] 53.1 57.1 32.4 12.3 15.8 58.2 56.7 39.6 0.9 44.8 39.9 31.0 54.0 62.4 4.5 20.6 39.2 38.1 48.9 48.6 37.9

MELM 56.4 54.7 30.9 21.1 17.3 52.8 60.0 36.1 3.9 47.8 35.5 28.9 30.9 61.0 5.8 22.8 38.8 39.6 42.1 54.8 38.4

VGG16

WSDDN [22] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

PDA [23] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

OICR [27] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

Self-Taught [29] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

WCCN [28] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

TS2C [59] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

WeakRPN [60] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

MELM 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

Ens: OICR-Ens. [27] 58.5 63.0 35.1 16.9 17.4 63.2 60.8 34.4 8.2 49.7 41.0 31.3 51.9 64.8 13.6 23.1 41.6 48.4 58.9 58.7 42.0

MELM-Ens. 60.3 65.0 39.5 29.0 17.5 66.1 66.4 44.8 18.6 59.0 48.4 53.2 53.0 67.2 11.0 26.5 50.0 55.7 63.1 62.4 47.8

Comparison of MELM to the state-of-the-arts
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min-entropy strategy is more effective than the image
segmentation strategy used inWCCN.

Image Classification. The object clique discovery and object
localization components highlighted informative regions and
suppressed disturbing backgrounds, which also benefited
image classification. As shown in Table 7, with the VGGF
model, MELM achieved 87.8 percent mAP. With the VGG16
model, MELM achieved 93.1 percent mAP, which respec-
tively outperformed WSDDN [22] and WCCN [28] up to 3.4
percent (93.1 versus 89.7 percent) and 2.2 percent (93.1 versus
90.9 percent). It is noteworthy that MELM outperformed the
VGG16 network, specifically trained for image classification,
by 3.8 percentmAP (93.1 versus 89.3 percent).

4.3.2 Large-Scale Datasets

On the ILSVRC2013 dataset with 200 object classes, Table 5,
MELM with VGGF outperformed the WCCN approach by
3.6 percent (13.4 versus 9.8 percent). On the MS COCO 2014
dataset, we evaluated the image classification, pointing
localization, and object detection performance and com-
pared it with the state-of-the-arts. The evaluation metrics

Fig. 10. Object detection examples on the PASCAL VOC 2012 and MS COCO 2014 datasets. Yellow bounding boxes denote ground-truth annota-
tions, green boxes correct detection results and red boxes false detection results. (Best viewed in color).

TABLE 4
Correct Localization Rate (%) on the PASCAL

VOC 2007 trainval Set

CNN Method mAP

VGGF/AlexNet

MILinear [25] 43.9
LCL+Context [16] 48.5

PDA [23] 49.8
WCCN [28] 52.6

Multi-fold MIL [11] 54.2
WSDDN [22] 54.2

ContextNet [24] 55.1

MELM 58.4

VGG16

PDA [23] 52.4
WSDDN [22] 53.5
WCCN [28] 56.7

MELM 61.4

Comparison of MELM to the state-of-the-arts.
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for image classification included macro/micro precision
(P-C and P-O), macro/micro recall (R-C and R-O), macro/
micro F1-measure (F1-C and F1-O) [64]. It can be seen in
Table 6 that for image classification MELM outperformed

SPN [37] by 23.1 percent (79.1 versus 56 percent). For point-
ing localization, MELM outperformed SPN by 9.8 percent
(65.1 versus 55.3 percent). For object detection, MELM out-
performed WSDDN. With these experiments, we set new
baselines for weakly supervised object detection on large-
scale datasets.

5 CONCLUSION

In this paper, we proposed an effective deep min-entropy
latent model (MELM) for weakly supervised object detec-
tion (WSOD). MELM was deployed as three components of
clique partition, object clique discovery, and object localiza-
tion, and was unified with the deep learning framework in
an integrated manner. By partitioning and discovering cli-
ques, MELM provided a new way to learn latent object
regions from redundant object proposals. With the min-
entropy principle, it can principally reduce the variance of
positive instances and alleviate the ambiguity of detectors.
With the recurrent learning algorithm, MELM improved
the performance of weakly supervised detection, weakly
supervised localization, and image classification, in striking
contrast with state-of-the-art approaches. The underlying
reality is that min-entropy results in minimum randomness
of an information system and the recurrent learning takes
advantages of continuation optimization, which provides
fresh insights for weakly supervised learning problems.

APPENDIX

For succinct representation, we denote E X ;Yð Þ Hc; uð Þ,
E X ;Y;Hcð Þ h; uð Þ, L X ;Yð Þ Hc; uð Þ, and L X ;Y;Hcð Þ h; uð Þ as E Hc; uð Þ,
Eðh; uÞ, L Hc; uð Þ, and L h; uð Þ, respectively.

Derivation for Object Clique Discovery. Given the object
score s y; h; uð Þ as the input of the entropy models, its gradi-
ent can be computed as

@LðHc; uÞ
@s y; h; uð Þ ¼

X
y0;h0

@LðHc; uÞ
@p y0; h0; uð Þ

@p y0; h0; uð Þ
@s y; h; uð Þ

¼
X
y0;h0

y0
@E Hc; uð Þ
@p y0; h0; uð Þ þ

y0 � 1

1� p y0; h0; uð Þ
� �

@p y0; h0; uð Þ
@s y; h; uð Þ ;

(16)

TABLE 7
Image Classification mAP (%) on the PASCAL

VOC 2007 test Set

CNN Method mAP

VGGF/AlexNet

MILinear [25] 72.0
AlexNet [57] 82.4
WSDDN [22] 85.3
WCCN [28] 87.8

MELM 87.8

VGG16

VGG16 [58] 89.3
WSDDN [22] 89.7
WCCN [28] 90.9

MELM 93.1

Comparison of MELM to the state-of-the-arts.

TABLE 5
Detection Mean Average Precision (%) on the PASCALVOC

2010, 2012, and the ILSVRC 2013 Datasets

Dataset CNN Method Dataset Splitting mAP

PASCAL
VOC 2010

VGGF/
AlexNet

PDA [23] train/val 21.4
WCCN [28] trainval/test 28.8

MELM train/val 35.6

MELM trainval/test 36.3

VGG16

PDA [23] train/val 30.7
WCCN [28] trainval/test 39.5

MELM train/val 37.1

MELM trainval/test 39.9

PASCAL
VOC 2012

VGGF/
AlexNet

PDA [23] train/val 22.4
MILinear [25] train/val 23.8
WCCN [28] trainval/test 28.4

ContextNet [24] trainval/test 35.3
OICR-VGGM [27] trainval/test 34.6

MELM train/val 36.2

MELM trainval/test 36.4

VGG16

PDA [23] train/val 29.1
Self-Taught [29] train/val 39.0
WCCN [28] trainval/test 37.9
OICR [27] trainval/test 37.9

Self-Taught [29] trainval/test 38.3
TS2C [59] trainval/test 40.0

MELM train/val 40.2

MELM trainval/test 42.4

ILSVRC 2013 VGGF/
AlexNet

MILinear [25] - 9.6
PDA [23] val1/val2 7.7

WCCN [28] - 9.8

MELM val1/val2 13.4

Comparison of MELM to the state-of-the-arts.

TABLE 6
Detection and Localization Performance (%) on MSCOCO 2014

Image Classification

Method mAP F1-C P-C R-C F1-O P-O R-O
CAM [61] 54.4 - - - - - -
SPN [37] 56.0 - - - - - -
ResNet-101 [62] 75.2 69.5 80.8 63.4 74.4 82.2 68.0
MELM-VGG16 79.1 72.0 79.3 68.6 76.8 82.5 71.9

Pointing Localization (with class prediction)

Method WeakSup
[34]

Pronet
[63]

DFM
[42]

SPN
[37]

MELM

mAP 41.2 43.5 49.2 55.3 65.1

Object Detection

Method CNN mAP@.5 mAP@[.5,.95]
WSDDN [22] VGGF 10.1 3.1

MELM VGGF 11.9 4.1
VGG16 18.8 7.8

Comparison of MELM to the state-of-the-arts.
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where the partial derivation of E Hc; uð Þ with respect to
p y; h; uð Þ is computed as

@E Hc; uð Þ
@p y0; h0; uð Þ ¼

�1P
c wHc

P
h2Hc

p y; h; uð Þ �

1

H0c
�� ��

X
h2H0c

p y0; h; uð Þ
0
@

1
A X

y6¼y0
p y; h; uð Þ

0
@

1
A

0
@

=
X
y

p y; h; uð Þ
 !2

þ wH0c

1
A;

(17)

where Hc0 is the clique including h0. The partial derivation
of p y; h; uð Þwith respect to s y; h; uð Þ is computed as

@p y0; h0; uð Þ
@s y; h; uð Þ ¼

�s y0; h0; uð Þs y; h; uð Þ; h 6¼ h0 or y 6¼ y0;
s y0; h0; uð Þ � s y; h; uð Þ2; otherwise:

�
(18)

Derivation for Object Localization. In Eq. (11), the term
whp y; h; uð Þ is used as a pseudo label for h, which does not
back-propagate gradients. Therefore, the derivation for
object localization can be simply computed as

@Lðh; uÞ
@s y; h; uð Þ ¼

X
y0;h0

@Lðh; uÞ
@p y0; h0; uð Þ

@p y0; h0; uð Þ
@s y; h; uð Þ

¼
X

y0;h02 H�
1
;H�

2
;:::f g

wh0
@p y0; h0; uð Þ
@s y; h; uð Þ :

(19)

The partial derivation of Lðh; uÞ with respect to s y; h; uð Þ is
calculated with Eqs. (18) and (19).
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